Log in

Optimization of Fe2O3–CeO2 Nanocomposite As an Efficient Catalyst for the Synthesis of 2,4,5-Triarylimidazoles

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The co-precipitation method was used to synthesize the Fe2O3–CeO2 nanocomposite in the presence of sodium dodecyl sulphate (SDS). The effect of pH and temperature on the properties of nanocomposite was studied to optimize the reaction condition. The synthesized nanocomposite was characterized by using different analytical techniques including FTIR, XRD, SEM-EDX, and TGA. The results showed that increase in temperature and decrease in pH allow to reduce the particle size. The catalytic efficiency of synthesized nanocomposite was studied by using it as a catalyst for one pot synthesis of 2,4,5-triarylimidazole, which is simple, efficient and cost-effective method. The results showed that Fe2O3–CeO2 nanocomposite synthesized at higher temperature was more efficient catalyst due to having small particle size, while 2,4,5-triarylimidazole was analyzed by TLC, elemental analysis and GCMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Scheme 1.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Y. Tamirat, J. Mater. Sci. Nanotechnol. 5, 202 (2017).

    Google Scholar 

  2. M. C. Senut, Y. Zhang, F. Liu, et al., Small 5, 631 (2016).

    Article  CAS  Google Scholar 

  3. J. T. Verkey, Orient. J. Chem. 33, 1035 (2017).

    Article  CAS  Google Scholar 

  4. N. V. Suramwar, S. R. Thakare, and N. T. Khaty, Int. J. Knowledge Eng. 3, 98 (2012).

    Google Scholar 

  5. G. Sharma, A. Kumar, S. Sharma, et al., J. King Saud Univ.-Sci. 31, 257 (2017).

    Google Scholar 

  6. M. A. Farrukh, K. M. Butt, K. K. Chong, and W. S. Chang, J. Saudi Chem. Soc. 23, 561 (2019).

    Article  CAS  Google Scholar 

  7. D. Cardillo, M. Weiss, M. Tehei, et al., RSC Adv. 6, 65397 (2016).

    Article  CAS  Google Scholar 

  8. A. Imtiaz and M. A. Farrukh, J. Mater. Sci. Mater. Electron. 28, 2788 (2017).

    Article  CAS  Google Scholar 

  9. S. Rajeshkumar and P. Naik, Biotechnol. Rep. 17, 1 (2018).

    Article  CAS  Google Scholar 

  10. A. Walther and A. Jacobi von Wangelin, Curr. Org. Chem. 17, 326 (2013).

    Article  Google Scholar 

  11. H. M. Gobara, W. A. Aboutaleb, K. M. Hashem, et al., J. Mater. Sci. 52, 550 (2016).

    Article  CAS  Google Scholar 

  12. D. K. Bora and P. Deb, Nanoscale Res. Lett. 4, 138 (2009).

    Article  CAS  Google Scholar 

  13. Q. Lui, Z. M. Cui, S. W. Bian, W. G. Song, and L. J. Wan, Nanotechnology 18, 38605 (2007).

    Google Scholar 

  14. A. A. Marzouk, V. M. Abbasov, A. H. Talybov, and S. K. Mohamed, World J. Org. Chem. 1, 6 (2013).

    Google Scholar 

  15. G. M. Ziarani, A. Badiei, N. Lashgari, and Z. Farahani, J. Saudi Chem. Soc. 20, 419 (2016).

    Article  CAS  Google Scholar 

  16. R. Rajkumar, A. Kamaraj, and K. Krishnasamy, J. Taibah Univ. Sci. 9, 498 (2015).

    Google Scholar 

  17. J. W. Black, G. J. Durant, J. C. Emmett, and C. R. Ganellin, Nature (London, U. K.) 248, 65 (1971).

    Article  Google Scholar 

  18. M. Misono, Chem. Commun. 13, 1141 (2001).

    Article  CAS  Google Scholar 

  19. Ü. Uçucu, N. G. Karaburun, and I. Işikdağ, Il Farmaco 56, 285 (2001).

    Article  PubMed  Google Scholar 

  20. S. D. Sharma, P. Hazarika, and D. Konwar, Tetrahedron Lett. 49, 2216 (2008).

    Article  CAS  Google Scholar 

  21. H. Brahmbhatt, M. Molnar, and V. Pavic, Karbala Int. J. Mod. Sci. 4, 200 (2018).

    Article  Google Scholar 

  22. B. F. Mirjalili, A. H. Bamoniri, and L. Zamani, Sci. Iran. 19, 565 (2012).

    Article  CAS  Google Scholar 

  23. K. Nikoofar, M. Haghighi, M. Lashanizadegan, and Z. Ahmadvand, J. Taibah Univ. Sci. 9, 570 (2015).

    Google Scholar 

  24. P. Bon, I. Zhitomirsky, and J. D. Embury, Mater. Chem. Phys. 86, 44 (2004).

    Article  CAS  Google Scholar 

  25. R. Tayebee and M. A. Ghadamgahi, Am. J. Org. Chem. 2, 25 (2012).

    Article  Google Scholar 

  26. L. J. Bellamy and R. L. Williams, Spectrochim. Acta 9, 341 (1957).

    Article  CAS  Google Scholar 

  27. L. Chuntonov, R. Kumar, and D. G. Kuroda, Phys. Chem. Chem. Phys. 16, 13172 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. T. Bezrodna, G. Puchkovska, V. Shymanovska, et al., J. Mol. Struct. 700, 175 (2004).

    Article  CAS  Google Scholar 

  29. T. Naseem and M. A. Farrukh, J. Chem. 2015, 1 (2015).

    Article  CAS  Google Scholar 

  30. G. N. Vayssilov, M. Mihaylov, P. S. Petkov, et al., J. Phys. Chem. C 115, 23435 (2011).

    Article  CAS  Google Scholar 

  31. M. A. Ditta, M. A. Farrukh, S. Ali, and N. Younas, Russ. J. Appl. Chem. 90, 151 (2017).

    Article  CAS  Google Scholar 

  32. S. Ahmad, M. A. Farrukh, M. Khan, M. Khaleeq-ur-Rahman, and M. A. Tahir, Canad. Chem. Trans. 2, 122 (2014).

    Google Scholar 

  33. M. M. Masadeh, G. A. Karasneh, M. A. Al-Akhras, B. A. Albiss, K. M. Aljarah, et al., Cytotechnology 67, 427 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. S. Perveen and M. A. Farrukh, J. Mater. Sci. Mater. Electron. 28, 10806 (2017).

    Article  CAS  Google Scholar 

  35. A. Afzaal and M. A. Farrukh, Mater. Sci. Eng. B 22, 167 (2017).

    Article  CAS  Google Scholar 

  36. S. Ali and M. A. Farrukh, J. Chin. Chem. Soc. 65, 276 (2017).

    Article  CAS  Google Scholar 

  37. D. M. Prabaharan, K. Sadaiyandi, M. Mahendran, and S. Sagadevan, Mater. Res. 19, 478 (2019).

    Article  Google Scholar 

  38. B. Gilbert, C. Frandsen, E. R. Maxey, and D. M. Sherman, Phys. Rev. B 79, 1 (2009).

    Article  CAS  Google Scholar 

  39. V. Mohanraj, R. Jayaprakash, J. Chandrasekaran, R. Robert, and P. Sangaiya, Mater. Sci. Semicond. Process. 66, 131 (2017).

    Article  CAS  Google Scholar 

  40. Y. B. Acharya, Solid-State Electron. 45, 1115 (2001).

    Article  CAS  Google Scholar 

  41. S. T. Shah, Yehya W. A. O. Saad, K. Simarani, Z. Z. Chowdhury, et al., Nanomaterials 7, 1 (2017).

    Article  CAS  Google Scholar 

  42. P. Burnham, N. Dollahon, C. H. Li, A. J. Viescas, and G. C. Papaefthymiou, J. Nanopart. 2013, 1 (2013).

  43. S. Gao, W. Zhang, Z. An, S. Kong, and D. Chen, Adsorpt. Sci. Technol. 37, 185 (2017).

    Article  CAS  Google Scholar 

  44. B. V. Shitole, N. V. Shitole, S. B. Ade, and G. K. Kakde, Orbital: Electron. J. Chem. 7, 240 (2015).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The corresponding author (Muhammad Akhyar Farrukh) would like to thank Higher Education Commission (HEC) Pakistan for providing funds for the project no. 20-3142/NRPU/R&D/HEC/entitled “Synthesis of iron doped CeO2–SiO2 nanocomposites.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akhyar Farrukh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyas, I., Bashir, I. & Farrukh, M.A. Optimization of Fe2O3–CeO2 Nanocomposite As an Efficient Catalyst for the Synthesis of 2,4,5-Triarylimidazoles. Russ. J. Phys. Chem. 95, 1023–1032 (2021). https://doi.org/10.1134/S0036024421050150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421050150

Keywords:

Navigation