Log in

Theoretical Prediction of Properties of Cyclopenta[b]pyrrol-2-one Derivatives

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The geometrical structures of the cyclopenta[b]pyrrol-2-ones were optimized at the DFT/B3LYP/6-31G* level of theory, and the obtained structures were confirmed to be minima on the potential energy surface by frequency calculations. Based on the optimized configurations, electronic excitation and emission were studied with the TD-DFT method. The energy behavior of A, B, and C have been examined in the THF solvent using the polarizable continuum (PCM) model. Molecular frontier orbital energy levels, UV–Vis spectra, heat maps, and fluorescence properties were investigated in detail. Furthermore, based on an analysis of hydrogen bonding interactions between HIV-1 protease and compound C, it can be concluded that C is expected to form a stable hydrogen bonding with ILE 50. All the work in this paper provides a theoretical basis for the research on pyrrol-2-ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. Eicher, S. Hauptmann, and A. Speicher, The Chemistry of Heterocycles: Structures, Reactions, Synthesis, and Applications (Wiley, Hoboken, 2013).

    Google Scholar 

  2. M. Kangani, M. T. Maghsoodlou, and N. Hazeri, Chin. Chem. Lett. 27, 66 (2016).

    Article  CAS  Google Scholar 

  3. B. Oliva, A. O’Neill, J. M. Wilson, P. J. O’Hanlon, and I. Chopra, Antimicrob. Agents Ch. 45, 532 (2001).

    Article  CAS  Google Scholar 

  4. H. Uchiro, N. Shionozaki, R. Tanaka, H. Kitano, N. Iwamura, and K. Makino, Tetrahedron Lett. 54, 506 (2013).

    Article  CAS  Google Scholar 

  5. L. Yang, C. H. Lei, D. X. Wang, Z. T. Huang, and M. X. Wang, Org. Lett. 12, 3918 (2010).

    Article  CAS  Google Scholar 

  6. L. Xu, B. Wang, X. Wang, Q. Li, X. Wang, and S. Guo, J. Liaoning Shihua Univ. 4, 1 (2019).

  7. W. Du, J. Hu, K. Zuo, K. Liu, L. Liang, and T. Dai, J. China Pharm. Univ. 47, 551 (2016).

    Google Scholar 

  8. X. Z. Zhao, K. Maddali, B. C. Vu, C. Marchand, S. H. Hughes, Y. Pommier, and T. R. Burke, Jr., Bioorg. Med. Chem. Lett. 19, 2714 (2009).

    Article  CAS  Google Scholar 

  9. S. S. Sajadikhah, M. T. Maghsoodlou, and N. Hazeri, Chin. Chem. Lett. 25, 58 (2014).

    Article  CAS  Google Scholar 

  10. G. Wang, R. Chen, M. Wu, S. Sun, X. Luo, Z. Chen, and Y. **ng, Tetrahedron Lett. 58, 847 (2017).

    Article  CAS  Google Scholar 

  11. X. Yao and X. Wang, Arkivoc 3, 352 (2016).

    Google Scholar 

  12. X. R. Wang, J. **ng, C. X. Yan, and Y. Cheng, Org. Biomol. Chem. 10, 970 (2012).

    Article  CAS  Google Scholar 

  13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 16 (Gaussian, Inc., Wallingford CT, 2016).

    Google Scholar 

  14. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  15. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  16. K. D. Dobbs and W. J. Hehre, J. Comput. Chem. 8, 880 (1987).

    Article  CAS  Google Scholar 

  17. N. M. O’boyle, A. L. Tenderholt, and K. M. Langner, J. Comput. Chem. 29, 839 (2008).

    Article  Google Scholar 

  18. T. Lu, Multiwfn Manual, version 3.6(dev), Section 3.21.1. http://sobereva.com/multiwfn.

  19. M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lindahl, SoftwareX 1, 19 (2015).

  20. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).

    Article  CAS  Google Scholar 

  21. T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012).

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Talent Scientific Research Fund of LSHU (no. 2016XJJ-010), the 2016 General Project of Education Department of Liaoning Province (no. L2016003), the Doctoral Research Fund of Liaoning Science and Technology Department (no. 20170520158), the Opening Funds of Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University (JDSJ2018-05) and the Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) (grant no. sklpme2019-4-24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ao Rong Wang.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li Yan Xu, Zhou, Y., Wang, B. et al. Theoretical Prediction of Properties of Cyclopenta[b]pyrrol-2-one Derivatives. Russ. J. Phys. Chem. 94, 2072–2076 (2020). https://doi.org/10.1134/S0036024420100313

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420100313

Keywords:

Navigation