Log in

Sensitization of Sm/SnO2\( - \)SiO2 Nanocomposite with Zwitterionic Surfactant for Enhanced Photocatalytic Performance under Sunlight

  • PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

This work presents the synthesis of SnO2–SiO2 nanocomposite via sol–gel method using N‑dodecyl-N,N-dimethyl-3-ammonium-1-propanesulfonate (SB3-12) zwitterionic surfactant as a templating agent at room temperature. Rice husk was used as a source for preparation of SiO2 and do** of samarium (Sm) on tin oxide-silica (SnO2–SiO2) was done by hydrothermal method. Size, optical and catalytic properties of Sm/SnO2–SiO2 was found dependent on the do** of Sm. Coats-Redfern and Horowitz-Metzger’s models were used to investigate the kinetics and thermodynamic parameters. The Sm/SnO2–SiO2 nanocomposite was characterized by FTIR, XRD, TGA, TEM, SEM, EDX and particle size analyzer. The photocatalyic activity of prepared material was studied against methylene blue dye under irradiation of sunlight. It was found that Sm/SnO2–SiO2 nanocomposite has small size, reduced band gap and greater degradation capacity than SnO2–SiO2 nanocomposite. Dependence of crystallinity, dislocation density and specific surface area on the size of nanocomposite was also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. F. D. Souza, H. Fiedler, and F. Nome, J. Braz. Chem. Soc. 27, 372 (2016).

    CAS  Google Scholar 

  2. B. Munir, M. A. Farrukh, H. Perveen, M. Khaleeq-ur-Rahman, and R. Adnan, Russ. J. Phys. Chem. A 89, 1051 (2015).

    CAS  Google Scholar 

  3. S. Ali, M. A. Farrukh, and M. Khaleeq-ur-Rahmam, Korean J. Chem. Eng., 2100 (2013).

  4. N. Younas, M. A. Farrukh, S. Ali, M. A. Ditta, and R. Adnan, Russ. J. Phys. Chem. A 91, 2201 (2017).

    Article  CAS  Google Scholar 

  5. S. Perveen and M. A. Farrukh, J. Mater. Sci. Mater. Electron. 28, 10806 (2017).

    Article  CAS  Google Scholar 

  6. T. Li and T. Wang, Mater. Chem. Phys. 112, 398 (2008).

    Article  CAS  Google Scholar 

  7. K. M. Butt, M. A. Farrukh, and I. Muneer, J. Mater. Sci. Mater. Electron. 27, 8493 (2016).

    Article  CAS  Google Scholar 

  8. F. Adam, J. N. Appaturi, R. Thankappan, and M. A. M. Nawi, Appl. Surf. Sci. 257, 811 (2010).

    Article  CAS  Google Scholar 

  9. C. S. Ferreira, P. L. Santos, J. A. Bonacin, R. R. Passos, and L. A. Pocrifka, Mat. Res. 18, 639 (2015).

    Article  CAS  Google Scholar 

  10. D. L. Feldhiem, J. Colby, and A. Foss, Metal Nanoparticles: Synthesis, Characterization, and Applications (Marcel Dekker, New York, 2002).

    Google Scholar 

  11. A. Afzaal and M. A. Farrukh, Mater. Sci. Eng. B 223, 167 (2017).

    Article  CAS  Google Scholar 

  12. J. J. Liang, Y. H. Li, F. Liu, H. Y. Li, J.-S. Liu, and W. D. Yang, J. Appl. Phycol. 27, 2313 (2015).

    Article  CAS  Google Scholar 

  13. D. Wieczorek, D. Gwiazdowska, K. Staszak, Y. L. Chen, and T. L. Shen, J. Surfact. Deterg. (2016). https://doi.org/10.1007/s11743-016-1838-3

  14. T. Y. Wei, S. -Y. Lu, and Y. C. Chang, J. Chin. Inst. Chem. Eng. 38, 477 (2007).

    Article  CAS  Google Scholar 

  15. V. H. Le, C. N. H. Thuc, and H. H. Thuc, Nanoscale Res. Lett. 58, 1 (2013).

    Google Scholar 

  16. W. Wang, J. C. Martin, X. Fan, A. Han, Z. Luo, and L. Sun, Appl. Mater. Interfaces 4, 977 (2012).

    Article  CAS  Google Scholar 

  17. A. Tadjarodi, M. Haghverdi, and V. Mohammadi, Mater. Res. Bull. 47, 2584 (2012).

    Article  CAS  Google Scholar 

  18. T. H. Liou, Mater. Sci. Eng. A 364, 313 (2004).

    Article  CAS  Google Scholar 

  19. Q. Tang and T. Wang, J. Supercrit. Fluids 35, 91 (2005).

    Article  CAS  Google Scholar 

  20. M. Ahmaruzzaman and V. K. Gupta, Ind. Eng. Chem. Res. 50, 13589 (2011).

    Article  CAS  Google Scholar 

  21. Z. Li, W. Shen, Z. Wang, X. **ang, X. Zu, Q. Wei, and L. Wang, J. Sol-Gel. Sci. Technol. 49, 196 (2009).

    Article  CAS  Google Scholar 

  22. S. Javaid, M. A. Farrukh, I. Muneer, M. Shahid, M. Khaleeq-ur-Rahman, and A. A. Umar, Superlatt. Microstruct. 82, 234 (2015).

    Article  CAS  Google Scholar 

  23. L. Selegard, LiU-Tryck (Linko**, Sweden, 2013).

  24. T. P. Rao, S. G. Raj, and M. S. Kumar, in Proceedings of the 2nd International Conference on Devices, Circuits and Systems (2014), p. 1. https://doi.org/10.1109/ICDCSyst.2014.6926170

  25. F. Adam, J. N. Appaturi, Z. Khanam, R. Thankappan, and M. A. M. Nawi, Appl. Surf. Sci. 264, 718 (2013).

    Article  CAS  Google Scholar 

  26. N. Yalcin and V. Sevinc, Ceram. Int. 27, 219 (2001).

    Article  CAS  Google Scholar 

  27. Y. Shinohara and N. Kohyama, Ind. Health 42, 277 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. C. Lin, S. L. Young, C. Y. Kung, L. Horng, H. Z. Chen, M. C. Kao, Y. T. Shih, and C. Ou, Vacuum 87, 178 (2013).

    Article  CAS  Google Scholar 

  29. G. Singh, A. Hastir, and R. C. Singh, AIP Conf. Proc. 1731, 050117 (2015).https://doi.org/10.1063/1.4947771

    Article  CAS  Google Scholar 

  30. R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, and A. C. Bose, Solid State Commun. 149, 1919 (2009).

    Article  CAS  Google Scholar 

  31. A. Imtiaz and M. A. Farrukh, J. Mater. Sci., Mater. Electron., 2788 (2017).

  32. P. Bindu and S. Thomas, J. Theor. Appl. Phys. 8, 123 (2014).

    Article  Google Scholar 

  33. T. Theivasanthi and M. Alagar, Int. J. Phys. Sci. 6, 3662 (2011).

    Google Scholar 

  34. S. Bykkam, M. Ahmadipour, S. Narisngam, V. R. Kalagadda, and S. C. Chidurala, Adv. Nanopart. 4, 1 (2015).

    Article  CAS  Google Scholar 

  35. B. Nath and T. F. Barbhuiya, J. Chem. Pharm. Res. 6, 608 (2014).

    CAS  Google Scholar 

  36. K. H. Harbbi and A. A. Ihsan, Adv. Phys. Theor. Appl. 49, 34 (2015).

    Google Scholar 

  37. A. K. Zak, W. A. Majid, M. E. Abrishami, and R. Yousef, Solid State Sci. 13, 251 (2011).

    Article  CAS  Google Scholar 

  38. M. M. Rahman, A. Jamal, S. B. Khan, and M. Faisal, J. Phys. Chem. C 115, 9503 (2011).

    Article  CAS  Google Scholar 

  39. L. T. Zhuravlev, Colloids Surf., A 173, 1 (2000).

    Article  CAS  Google Scholar 

  40. E. Apaydin-Varol, S. Polat, and A. E. Putun, Therm. Sci. 18, 833 (2014).

    Article  Google Scholar 

  41. S. Ramukutty and E. Ramachandran, J. Cryst. Process Technol. 4, 71 (2014).

    Article  CAS  Google Scholar 

  42. K. Acıkalın, J. Therm. Anal. Calorim. 105, 145 (2011).

    Article  CAS  Google Scholar 

  43. K. G. Mallikarjun, Eur. J. Chem. 1, 105 (2004).

    CAS  Google Scholar 

  44. S. A. Al-Bayaty and A. J. Farhan, Int. J. Appl. Innov. Eng. Manage. 4, 139 (2015).

    Google Scholar 

  45. S. Gopalakrishnan and R. Sujatha, Chem. Sin. 2, 103 (2011).

    Google Scholar 

  46. A. A. Yelwande, M. E. Navgire, D. T. Tayde, B. R. Arbad, and M. K. Landa, S. Afr. J. Chem. 65, 131 (2012).

    CAS  Google Scholar 

  47. F. Yi-Si, Y. Ri-Sheng, and Z. Li-De, Chin. Phys. Lett. 21, 1374 (2004).

    Article  Google Scholar 

  48. M. A. Farrukh, F. Naseem, A. Imtiaz, M. Khaleeq-ur-Rahman, T. D. Martins, and K. M. Zia, Russ. J. Phys. Chem. A 90, 1231 (2016).

    CAS  Google Scholar 

  49. L. Ye, Y. Su, X. **, H. **e, and C. Zhang, Environ. Sci. Nano 1, 90 (2014).

    Article  CAS  Google Scholar 

  50. R. Zuo, G. Du, W. Zhang, L. Liu, Y. Liu, L. Mei, and Z. Li, Adv. Mater. Sci. Eng., 1 (2014).

  51. L. Ye, Y. Su, X. **, H. **e, and C. Zhang, Environ. Sci. Nano 1, 90 (2014).

    Article  CAS  Google Scholar 

  52. S. Rtimia, C. Pulgarina, R. San**es, and J. Kiwi, Appl. Catal., B 162, 236 (2015).

    Article  CAS  Google Scholar 

  53. D. Pei and J. Luan, Int. J. Photoenergy, 1 (2012).

Download references

ACKNOWLEDGMENTS

The authors are thankful to Higher Education Commission (HEC) Pakistan to support this research work through NRPU research project no. 20-3142/NRPU/R&D/HEC/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akhyar Farrukh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabeela Aslam, Farrukh, M.A. & Karim, S. Sensitization of Sm/SnO2\( - \)SiO2 Nanocomposite with Zwitterionic Surfactant for Enhanced Photocatalytic Performance under Sunlight. Russ. J. Phys. Chem. 93, 1610–1619 (2019). https://doi.org/10.1134/S0036024419080211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419080211

Keywords:

Navigation