Log in

Synthesis and Ionic Conductivity of Complex Phosphates Li1 + xTi1.8 – xFexGe0.2(PO4)3 with NASICON Structure

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Phosphates Li1 + xTi1.8 – xFexGe0.2(PO4)3 (x = 0.1–0.3) with the NASICON structure have been prepared and studied for the first time. It has been shown that co-do** with germanium and iron leads to significant increase in the ionic conductivity of the prepared materials at low degrees of titanium substitution. The influence of the synthesis method (solid-state and sol-gel) and conditions of precursor processing on the ionic conductivity of the materials has been studied. Optimum conditions for the mechanical processing of precursors have been found to obtain ceramics with the highest conductivity. Li1.2Ti1.6Fe0.2Ge0.2(PO4)3 prepared by the solid-state method exhibits the highest ionic conductivity at room temperature (1.7 × 10–4 S/cm) among all samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Manthiram, X. Yu, and S. Wang, Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103

    Article  CAS  Google Scholar 

  2. F. Zheng, M. Kotobuki, S. Song, et al., J. Power Sources 389, 198 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.022

    Article  CAS  Google Scholar 

  3. P. R. Chinnam, R. N. Clymer, A. A. Jalil, et al., Chem. Mater. 27, 5479 (2015). https://doi.org/10.1021/acs.chemmater.5b00940

    Article  CAS  Google Scholar 

  4. Q. Li, J. Chen, L. Fan, et al., Green Energy Environ. 1, 18 (2016). https://doi.org/10.1016/j.gee.2016.04.006

    Article  Google Scholar 

  5. Z. Gao, H. Sun, L. Fu, et al., Adv. Mater. 30, 1705702 (2018). https://doi.org/10.1002/adma.201705702

    Article  CAS  Google Scholar 

  6. P. Prakash, B. Fall, J. Aguirre, et al., Nat. Mater. 22, 627 (2023). https://doi.org/10.1038/s41563-023-01508-1

    Article  CAS  PubMed  Google Scholar 

  7. M. Hou, F. Liang, K. Chen, et al., Nanotechnol. 31, 132003 (2020). https://doi.org/10.1088/1361-6528/ab5be7

    Article  CAS  Google Scholar 

  8. E. Hossain, H. Faruque, M. Sunny, et al., Energies 13, 3651 (2020). https://doi.org/10.3390/en13143651

    Article  CAS  Google Scholar 

  9. D. Yu. Voropaeva, E. Yu. Safronova, S. A. Novikova, et al., Mendeleev Commun. 32, 287 (2022). https://doi.org/10.1016/j.mencom.2022.05.001

    Article  CAS  Google Scholar 

  10. C. Zhang, Y.-L. Wei, P.-F. Cao, et al., Renew. Sustain. Energy Rev. 82, 3091 (2018). https://doi.org/10.1016/j.rser.2017.10.030

    Article  CAS  Google Scholar 

  11. L. Wang, J. Li, G. Lu, et al., Front. Mater. 7, 111 (2020). https://doi.org/10.3389/fmats.2020.00111

    Article  Google Scholar 

  12. H. Duan, F. Oluwatemitope, S. Wu, et al., ACS Appl. Mater. Interfaces 12, 52271 (2020). https://doi.org/10.1021/acsami.0c16966

    Article  CAS  PubMed  Google Scholar 

  13. K. Subramanian, G. V. Alexander, K. Karthik, et al., J. Energy Storage 33, 102157 (2021). https://doi.org/10.1016/j.est.2020.102157

    Article  Google Scholar 

  14. J. C. Bachman, S. Muy, A. Grimaud, et al., Chem. Rev. 116, 140 (2016). https://doi.org/10.1021/acs.chemrev.5b00563

    Article  CAS  PubMed  Google Scholar 

  15. G. B. Kunshina, I. V. Bocharova, and O. B. Shcherbina, Inorg. Mater. 58, 147 (2022). https://doi.org/10.1134/S0020168522020091

    Article  CAS  Google Scholar 

  16. I. A. Stenina, I. Yu. Pinus, A. I. Rebrov, et al., Solid State Ionics 175 (1-4), 445 (2004). https://doi.org/10.1016/j.ssi.2003.12.037

    Article  CAS  Google Scholar 

  17. Y. Fang, J. Zhang, L. **ao, et al., Adv. Sci. 4, 1600392 (2017). https://doi.org/10.1002/advs.201600392

    Article  CAS  Google Scholar 

  18. R. Thirupathi, V. Kumari, S. Chakrabarty, et al., Prog. Mater. Sci. 137, 101128 (2023). https://doi.org/10.1016/j.pmatsci.2023.101128

    Article  CAS  Google Scholar 

  19. H. Aono, E. Sugimoto, Y. Sadaoka, et al., J. Electrochem. Soc. 137, 1023 (1990). https://doi.org/10.1149/1.2086597

    Article  CAS  Google Scholar 

  20. R. Kahlaoui, K. Arbi, I. Sobrados, et al., Inorg. Chem. 56, 1216 (2017). https://doi.org/10.1021/acs.inorgchem.6b02274

    Article  CAS  PubMed  Google Scholar 

  21. K. Arbi, M. G. Lazarraga, D. B. H. Chehimi, et al., Chem. Mater. 16, 255 (2004). https://doi.org/10.1021/cm030422i

    Article  CAS  Google Scholar 

  22. A. I. Svitan’ko, S. A. Novikova, I. A. Stenina, et al., Inorg. Mater. 50, 273 (2014). https://doi.org/10.1134/S0020168514030145

    Article  CAS  Google Scholar 

  23. G. B. Kunshina, O. G. Gromov, E. P. Lokshin, et al., Russ. J. Inorg. Chem. 59, 424 (2014). https://doi.org/10.1134/S0036023614050118

    Article  CAS  Google Scholar 

  24. W. **ao, J. Wang, L. Fan, et al., Energy Storage Mater. 19, 379 (2019). https://doi.org/10.1016/j.ensm.2018.10.012

    Article  Google Scholar 

  25. M. Perez-Estebanez, J. Isasi-Marin, D. M. Tobbens, et al., Solid State Ionics 266, 1 (2014). https://doi.org/10.1016/j.ssi.2014.07.018

    Article  CAS  Google Scholar 

  26. P. Zhang, M. Matsui, A. Hirano, et al., Solid State Ionics 253, 175 (2013). https://doi.org/10.1016/j.ssi.2013.09.022

    Article  CAS  Google Scholar 

  27. I. Stenina, A. Pyrkova, and A. Yaroslavtsev, Batteries 9, 59 (2023). https://doi.org/10.3390/batteries9010059

    Article  CAS  Google Scholar 

  28. D. Safanama and S. Adams, J. Power Sources 340, 294 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.076

    Article  CAS  Google Scholar 

  29. D. Rettenwander, A. Welzl, S. Pristat, et al., J. Mater. Chem. A 4, 1506 (2016). https://doi.org/10.1039/C5TA08545D

    Article  CAS  Google Scholar 

  30. P. Wu, W. Zhou, X. Su, et al., Adv. Energy Mater. 13, 2203440 (2023). https://doi.org/10.1002/aenm.202203440

    Article  CAS  Google Scholar 

  31. A. E. Medvedeva, E. V. Makhonina, L. S. Pechen, et al., Russ. J. Inorg. Chem. 67, 952 (2022). https://doi.org/10.1134/S0036023622070154

    Article  CAS  Google Scholar 

  32. O. V. Lapshin, E. V. Boldyreva, and V. V. Boldyrev, Russ. J. Inorg. Chem. 66, 433 (2021). https://doi.org/10.1134/S0036023621030116

    Article  CAS  Google Scholar 

  33. A. B. Yaroslavtsev, Solid State Ionics 176, 2935 (2005). https://doi.org/10.1016/j.ssi.2005.09.025

    Article  CAS  Google Scholar 

  34. R. DeWees and H. Wang, ChemSusChem 12, 3713 (2019). https://doi.org/10.1002/cssc.201900725

    Article  CAS  PubMed  Google Scholar 

  35. A. Paolella, W. Zhu, D. Campanella, et al., Curr. Opin. Electrochem. 36, 101108 (2022). https://doi.org/10.1016/j.coelec.2022.101108

    Article  CAS  Google Scholar 

  36. E. A. Kurzina, I. A. Stenina, A. Dalvi, et al., Inorg. Mater. 57, 1035 (2021). https://doi.org/10.1134/S0020168521100071

    Article  CAS  Google Scholar 

  37. A. Yaroslavtsev and I. Stenina, Russ. J. Inorg. Chem. 51 (Suppl. 1), S97 (2006). https://doi.org/10.1134/S0036023606130043

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation, project no. 23-19-00642, https://rscf.ru/project/23-19-00642/, using equipment of the Shared Facility Center for Physicochemical Methods of Investigation, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Stenina.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by I. Kudryavtsev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stenina, I.A., Taranchenko, E.O., Ilin, A.B. et al. Synthesis and Ionic Conductivity of Complex Phosphates Li1 + xTi1.8 – xFexGe0.2(PO4)3 with NASICON Structure. Russ. J. Inorg. Chem. 68, 1707–1713 (2023). https://doi.org/10.1134/S0036023623602313

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623602313

Keywords:

Navigation