Log in

Preparation of Iron Ytterbium Garnet by Anion-Exchange Resin Precipitation

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Rare-earth ferrite garnets (REFGs) have pronounced magnetic and optical properties and are widely used in magnetooptics, laser and microwave technologies. This work offers a method for producing Yb3Fe5O12 powders with a mean grain size of 47 ± 9 nm, by means of the anion-exchange resin coprecipitation of iron(III) and ytterbium followed by annealing of the product at 1100°C. The anion-exchange resin precipitation rate and optimal parameters have been determined, as well as the parameters of precursors heat treatment. The products have been characterized by chemical analysis, X-ray powder diffraction, differential scanning calorimetry, and electron microscopy. The method is promising for the production of other REFGs and nonferrous metal ferrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. A. Samokhvalov, Magnetic Rare Earth Semiconductors (Nauka, Leningrad, 1977) [in Russian].

    Google Scholar 

  2. A. Goldman, Modern Ferrite Technology (Springer Science & Business Media, 2006).

    Google Scholar 

  3. M. Pardavi-Horvath, J. Magn. Magn. Mater. 215216, 171 (2000). https://doi.org/10.1016/S0304-8853(00)00106-2

    Article  Google Scholar 

  4. G. I. Zhuravlev, Ferrite Chemistry and Technology (Khimiya, Lelingrad, 1970) [in Russian].

  5. L. M. Letyuk, V. G. Kostishin, and A. V. Gonchar, Ferrite Materials Technology for Magnetoelectronics (MISiS, Moscow, 2005) [in Russian].

  6. A. I. Popov, Z. V. Gareeva, and A. K. Zvezdin, Phys. Rev. B. 92, 144429 (2015). https://doi.org/10.1103/PhysRevB.92.144420

    Article  CAS  Google Scholar 

  7. R. Nakamoto, B. Xu, C. Xu, et al., Phys. Rev. B 95, 1 (2017). https://doi.org/10.1103/PhysRevB.95.024434

    Article  Google Scholar 

  8. W. Wang, and D. Li, J. Magn. Magn. Mater. 321, 3307 (2009). https://doi.org/10.1016/j.jmmm.2009.05.068

    Article  CAS  Google Scholar 

  9. N. P. Kolmakova, S. V. Koptsik, G. S. Kritik, and A. Ya. Sarantsev, Fiz. Tverd. Tela 33, 2674 (1991).

    CAS  Google Scholar 

  10. E. J. J. Mallmann, A. S. B. Sombra, J. C. Goes, and P. B. A. Fechine, Solid State Phenom. 202, 65 (2013). https://doi.org/10.4028/www.scientific.net/SSP.202.65

    Article  CAS  Google Scholar 

  11. V. Sharma and B. K. Kuanr, J. Alloys. Compd. 748, 591 (2018). https://doi.org/10.1016/j.jallcom.2018.03.086

    Article  CAS  Google Scholar 

  12. Yu-J. Siao and X. Qi, J. Alloys Compd. 691, 672 (2017). https://doi.org/10.1016/j.jallcom.2016.08.316

    Article  CAS  Google Scholar 

  13. A. Ikesue and Y. L. Aung, J. Sel. Top. Quantum Electron. 24, 1 (2018). https://doi.org/10.1109/JSTQE.2018.2811901

    Article  Google Scholar 

  14. J. Su, X. Lu, J. Zhang, et al., J. Appl. Phys. 111, 1148 (2012). https://doi.org/10.1063/1.3676450

    Article  CAS  Google Scholar 

  15. M. Gasgnier, J. Ostorero, and A. Petit, J. Alloys Compd. 275, 41 (1998). https://doi.org/10.1016/S0925-8388(98)00270-9

    Article  Google Scholar 

  16. O. Opuchovic, A. Kareiva, K. Mazeika, and D. Baltrunas, J. Magn. Magn. Mater. 422, 425 (2017). https://doi.org/10.1016/j.jmmm.2016.09.041

    Article  CAS  Google Scholar 

  17. V. Jakes, K. Rubesova, J. Havlicek, et al., IOP Conf. Ser.: Mater. Sci. Eng. 465, 012003 (2019). https://doi.org/10.1088/1757-899x/465/1/012003

  18. H. Haneda, T. Yanagitani, A. Watanabe, and S. Shirasaki, J. Ceram. Soc. Jpn. 98, 285 (1991). https://doi.org/10.2109/jcersj.98.285

    Article  Google Scholar 

  19. H. Haneda, T. Yanagitani, M. Sekita, et al., Mater. Sci. Monogr. 2, 2401 (1991).

    Google Scholar 

  20. G. L. Pashkov, S. V. Saikova, and M. V. Panteleeva, Theor. Found. Chem. Eng. 50, 575 (2016). https://doi.org/10.1134/S0040579516040254

    Article  CAS  Google Scholar 

  21. S. V. Saikova, G. L. Pashkov, and M. V. Panteleeva, Monografiya (Sib. Feder. Univ., Krasnoyarsk, 2018) [in Russian].

    Google Scholar 

  22. G. L. Pashkov, S. V. Saikova, M. V. Panteleeva, et al., Glass Ceram. 73, 107 (2016). https://doi.org/10.1007/s10717-016-9836-5

    Article  CAS  Google Scholar 

  23. S. V. Saikova, E. A. Kirshneva, M. V. Panteleeva, et al., Russ. J. Inorg. Chem. 64, 1191 (2019). https://doi.org/10.1134/S0044457X1910012X

    Article  CAS  Google Scholar 

  24. R. Ivantsov, N. Evsevskaya, S. Saikova, et al., Mater. Sci. Eng. 226, 171 (2017). https://doi.org/10.1016/j.mseb.2017.09.016

    Article  CAS  Google Scholar 

  25. G. L. Pashkov, S. V. Saikova, M. V. Panteleeva, et al., Khim. Khim. Tekhnol. 56, 77 (2013).

    CAS  Google Scholar 

  26. D. Saykova, S. Saikova, Y. Mikhlin, et al., Metals 10, 1075 (2020). https://doi.org/10.3390/met10081075

    Article  CAS  Google Scholar 

  27. T. V. Trofimova, S. V. Saikova, M. V. Panteleeva, et al., Glass Ceram. 75, 74 (2018). https://doi.org/10.1007/s10717-018-0032-7

    Article  CAS  Google Scholar 

  28. S. V. Saikova, T. V. Trofimova, A. Y. Pavlikov, and A. S. Samoilo, Russ. J. Inorg. Chem. 65, 291 (2020). https://doi.org/10.1134/S0036023620030110

    Article  CAS  Google Scholar 

  29. G. L. Pashkov, S. V. Saikova, M. V. Panteleeva, et al., Glass Ceram. 70, 225 (2013). https://doi.org/10.1007/s10717-013-9549-y

    Article  CAS  Google Scholar 

  30. N. Evsevskaya, E. Pikurova, S. V. Saikova, and I. V. Nemtsev, ACS Omega 5, 4542 (2020). https://doi.org/10.1021/acsomega.9b03877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. S. A. Shapiro, Analytical Chemistry (Vysshaya shkola, Moscow, 1973) [in Russian].

  32. K. Spahiu and J. Bruno, A Selected Thermodynamic Database for REE to Be Used in HLNW Performance Assessment Exercises (MBT Tecnologia Ambiental, Cerdanyola, 1995). https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/019/28019633.pdf?r=1.

  33. M. Markova-Velichkova, T. Lazarova, V. Tumbalev, et al., Chem. Eng. J. 231, 236 (2013). https://doi.org/10.1016/j.cej.2013.07.029

    Article  CAS  Google Scholar 

  34. H. K. Xu, C. M. Sorensen, and K. Klabunde, J. Mater. Res. 7, 712 (1992). https://doi.org/10.1557/JMR.1992.0712

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Equipment of the Krasnoyarsk Regional Shared Facilities Center, the Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, was used in the work.

Funding

This work was fulfilled under the Government assignment to the Institute of Chemistry and Chemical Technologies, the Siberian Branch of the Russian Academy of Sciences (project no. 0287-2021-0014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Saikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saikova, S.V., Kirshneva, E.A., Fadeeva, N.P. et al. Preparation of Iron Ytterbium Garnet by Anion-Exchange Resin Precipitation. Russ. J. Inorg. Chem. 67, 158–165 (2022). https://doi.org/10.1134/S0036023622020140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622020140

Keywords:

Navigation