Log in

Ti0.8B0.1P0.1O2 Solid Solution with the Anatase Structure

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The homogeneous solid solution Ti1 – x(BP)x/2O2 (0 ≤ х ≤ 0.2) with the anatase structure was obtained by gel combustion with polyvinyl alcohol. The possibility of combined replacement of titanium atoms in the anatase structure with boron and phosphorus was determined by studying samples of the Ti1– x(BP)x/2O2 series (0 ≤ х ≤ 1, step х = 0.1) by powder X-ray diffraction and IR spectroscopy. The obtained data were used to construct the TiO2–B2O3–P2O5 phase diagram describing phase equilibria involving Ti1 – x(BP)x/2O2 solid solution (0 ≤ х ≤ 0.2), Ti5P4O20, TiP2O7, BPO4, and the melt. Analysis of the absorption spectra of Ti0.9B0.05P0.05O2 and Ti0.8B0.1P0.1O2 in the 290–1000 nm range demonstrated that the equimolar introduction of B and P into anatase shifts the absorption edge to the red region. The specific surface area, skeletal density, and the particle size of Ti0.8B0.1P0.1O2 with the anatase structure were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. T. M. Serikov, N. K. Ibrayev, O. Y. Isaikin, and S. V. Savilov, Russ. J. Inorg. Chem. 66, 117 (2021). https://doi.org/10.1134/S0036023621010071

    Article  CAS  Google Scholar 

  2. D. A. Zherebtsov, S. A. Kulikovskikh, V. V. Viktorov, et al., Russ. J. Inorg. Chem. 64, 165 (2019). https://doi.org/10.1134/S0036023619020220

    Article  CAS  Google Scholar 

  3. L. Li, F. Meng, X. Hu, et al., PLOS ONE 11, e0152726 (2016). https://doi.org/10.1371/journal.pone.0152726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. K. Yang, Y. Dai, and B. Huang, Catalysts 10, 972 (2020). https://doi.org/10.3390/catal10090972

    Article  CAS  Google Scholar 

  5. M. V. Dozzi and E. Silli, J. Photochem. Photobiol. C 13, 13 (2013). https://doi.org/10.1016/j.jphotochemrev.2012.09.002

    Article  CAS  Google Scholar 

  6. X. Zhou, B. **, S. Zhang, et al., Electrochim. Commun. 12, 127 (2012). https://doi.org/10.1016/j.elecom.2012.03.020

    Article  CAS  Google Scholar 

  7. M. H. Basha, N. O. Gopal, D. B. Nimbalkar, et al., J. Mater. Sci. Mater. Electron. 28, 987 (2017). https://doi.org/10.3367/UFNe.2018.01.038279

    Article  CAS  Google Scholar 

  8. D. Chen, D. Yang, Q. Wang, et al., Ind. Eng. Chem. Res. 45, 4110 (2006). https://doi.org/10.1021/ie0600902

    Article  CAS  Google Scholar 

  9. H. Kitagawa, T. Kunisada, Y. Yamada, et al., J. Alloys Compd. 508, 582 (2010). https://doi.org/10.1016/j.jallcom.2010.08.125

    Article  CAS  Google Scholar 

  10. Z. Min, D. Ying, Z. Shi**, et al., Rare Metals 3, 243 (2011). https://doi.org/10.1007/s12598-011-0278-5

    Article  CAS  Google Scholar 

  11. D. H. Quiñones, A. Rey, M. Alvarez, et al., Appl. Catal. B: Environ. 178, 74 (2015). https://doi.org/10.1016/j.apcatb.2014.10.036

    Article  CAS  Google Scholar 

  12. E. B. Simsek, Appl. Catal. B: Environ. 200, 309 (2017). https://doi.org/10.1016/j.apcatb.2016.07.016

    Article  CAS  Google Scholar 

  13. P. Niu, G. Wu, P. Chen, et al., Front. Chem. 8, 172 (2020). https://doi.org/10.3389/fchem.2020.00172

  14. Y. N. Wang and J. J. Bian, Ceram. Int. 41, 4683 (2015). https://doi.org/10.1016/j.ceramint.2014.12.015

    Article  CAS  Google Scholar 

  15. V. Brandel and N. Dacheux, J. Solid State Chem. 177, 4755 (2004). https://doi.org/10.1016/j.jssc.2004.08.008

    Article  CAS  Google Scholar 

  16. M. Schöneborn, R. Glaum, and F. Reinauer, J. Solid State Chem. 181, 1367 (2008). https://doi.org/10.1016/j.jssc.2008.02.039

    Article  CAS  Google Scholar 

  17. F. Li, Y. Jiang, M. **a, et al., J. Phys. Chem. C 113, 18314 (2009), https://doi.org/10.1021/jp902558z

    Article  CAS  Google Scholar 

  18. H.-F. Yu, J. Phys. Chem. Solids 68, 600 (2007). https://doi.org/10.1016/j.jpcs.2007.01.050

    Article  CAS  Google Scholar 

  19. S. Guo, S. Han, M. Haifeng, et al., Mater. Res. Bull. 48, 3082 (2013). https://doi.org/10.1016/j.materresbull.2013.04.056

    Article  CAS  Google Scholar 

  20. R. Zheng, L. Lin, J. **e, et al., J. Phys. Chem. C 112, 15502 (2008). https://doi.org/10.1021/jp806121m

    Article  CAS  Google Scholar 

  21. D. Peak, G. W. Luther, and D. L. Sparks, Geochim. Cosmochim. Acta 67, 2551 (2003).https://doi.org/10.1016/S0016-7037(03)00096-6

    Article  CAS  Google Scholar 

  22. E. F. Medvedev and A. Sh. Komarevskaya, Glass Ceram. 2, 42 (2007). https://doi.org/10.1007/s10717-007-0010-y

    Article  CAS  Google Scholar 

  23. S. Benmokhtar, A. Eljazouli, J. Chaminade, et al., J. Solid State Chem. 180, 2713 (2007). https://doi.org/10.1016/j.jssc.2007.07.028

    Article  CAS  Google Scholar 

  24. S. Chen, M. Ye, H.-H. Chen, et al., J. Inorg. Organomet. Polym. 19, 139 (2009). https://doi.org/10.1007/s10904-008-9245-5

    Article  CAS  Google Scholar 

  25. C. Zhang, C. Lin, C. Li, et al., J. Phys. Chem. C 112, 2183 (2008). https://doi.org/10.1021/jp710046x

    Article  CAS  Google Scholar 

  26. V. N. Pavlikov, V. A. Yurchenko, and S. G. Tresvyatskii, Russ. J. Inorg. Chem. 21, 233 (1976).

    CAS  Google Scholar 

  27. A. E. Malshikov and I. A. Bondar, Inorg. Mater. 25, 829 (1989).

    Google Scholar 

  28. K. Ananthanarayanan, C. Mohanty, and J. Gielisse, Cryst. Growth 20, 63 (1973). https://doi.org/10.1016/0022-0248(73)90038-9

    Article  CAS  Google Scholar 

  29. M. Schmidt, B. Ewald, Yu. Prots, et al., Z. Anorg. Allg. Chem. 630, 655 (2004). https://doi.org/10.1002/zaac.200400002

    Article  CAS  Google Scholar 

  30. P. Makula, M. Pacia, and W. Macyk, J. Phys. Chem. Lett. 9, 6814 (2018). https://doi.org/10.1021/acs.jpclett.8b02892

    Article  CAS  Google Scholar 

  31. H. Irie, Y. Watanabe, and K. Hashimoto, Chem. Lett. 32, 772 (2003). https://doi.org/10.1246/cl.2003.772

    Article  CAS  Google Scholar 

  32. G. Liu, X. Yan, Z. Chen, et al., J. Mater. Chem. 19, 6590 (2009). https://doi.org/10.1039/b902666e

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This study was performed within the state assignment for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, in the field of fundamental scientific research using the equipment of the Center for Collective Use of the Physical Investigation Methods, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Smirnova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, M.N., Kop’eva, M.A., Nikiforova, G.E. et al. Ti0.8B0.1P0.1O2 Solid Solution with the Anatase Structure. Russ. J. Inorg. Chem. 66, 1792–1797 (2021). https://doi.org/10.1134/S0036023621120184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621120184

Keywords:

Navigation