Log in

Synthesis of Magnetic Nanopowders of Iron Oxide: Magnetite and Maghemite

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Magnetic iron oxides have been widely used in bio- and agrotechnology, however, procedures of their synthesis can be improved. Magnetic nanopowders whose composition corresponds to magnetite–maghemite solid solutions have been obtained by chemical precipitation from aqueous solutions of iron(II, III) chlorides. Synthesis conditions (exposure to ultrasound, inert gas bubbling, heating to 70°C, kee** in mother liquor) have been shown by scanning and transmission electron microscopy and by computing unit cell parameters for magnetite and maghemite lattice to affect the size, shape, and aggregation extent of nanoparticles. No monophase magnetite and maghemite formed during the synthesis, a solid solution of mixed composition has precipitated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. V. Knurova, I. Y. Mittova, N. S. Perov, et al., Russ. J. Inorg. Chem. 62, 281 (2017). https://doi.org/10.1134/S0036023617030081

    Article  CAS  Google Scholar 

  2. A. E. Dosovitskii, E. V. Grishechkina, A. L. Mikhlin, et al., Russ. J. Inorg. Chem. 62, 702 (2017). https://doi.org/10.1134/S0036023617060055

    Article  CAS  Google Scholar 

  3. L. V. Kozhitov, D. G. Muratov, V. G. Kostishin, et al., Russ. J. Inorg. Chem. 62, 1499 (2017). https://doi.org/10.1134/S0036023617110110

    Article  CAS  Google Scholar 

  4. V. N. Nikiforov, A. E. Goldt, E. A. Gudilin, et al., Bull. Russ. Acad. Sci.: Phys. 78, 1075 (2014). https://doi.org/10.3103/S1062873814100141

    Article  CAS  Google Scholar 

  5. M. V. Kulikova and V. I. Kochubei, Izv. Samarskogo Nauchn. Tsentra RAN 14, 206 (2012).

    Google Scholar 

  6. M. V. Volostnykh, A. G. Muradova, and E. V. Yurtov, Uspekhi v Khimii i Khim. Tekhnologii 25 (8), 7 (2011).

  7. A. G. Muradova, M. P. Zaytseva, A. I. Sharapaev, and E. V. Yurtov, Colloids Surf., A 509, 229 (2016). https://doi.org/10.1016/j.colsurfa.2016.08.080

    Article  CAS  Google Scholar 

  8. R. M. Cornell and U. Schwertmann, Book Review: The Iron Oxides von Rochelle, Acta Hydrochim. Hydrobiol. 31, (2003). https://doi.org/10.1002/aheh.200390056

  9. A. S. Lyadov, A. A. Kochubeev, L. D. Koleva, et al., Russ. J. Inorg. Chem. 61, 1387 (2016). https://doi.org/10.1134/S0036023616110127

    Article  CAS  Google Scholar 

  10. S. Laurent, D. Forge, M. Port, et al., Chem. Rev. 108, 2064 (2008). https://doi.org/10.1021/cr068445e

    Article  CAS  PubMed  Google Scholar 

  11. C. Xu and S. Sun, Adv. Drug. Deliv. Rev. 65, 732 (2013). https://doi.org/10.1016/j.addr.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  12. M. Rui, C. Ma, Y. Hao, et al., Front. Plant Sci. 7, 815 (2016). https://doi.org/10.3389/fpls.2016.00815

    Article  PubMed  PubMed Central  Google Scholar 

  13. N. G. M. Palmqvist, G. A. Seisenbaeva, P. Svedlindh, et al., Nanoscale Res. Lett. 12, 631 (2017). https://doi.org/10.1186/s11671-017-2404-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. G. G. Panova, O. A. Shilova, A. M. Nikolaev, et al., Agrofizika No. 3, 40 (2019). https://doi.org/10.25695/AGRPH.2019.03.07

  15. E. Darezereshki, Mater. Lett. 64, 1471 (2010).

    Article  CAS  Google Scholar 

  16. R. Rotaru, P. Samoila, N. Lupu, et al., Rev. Roum. Chim. 62, 131 (2017).

    Google Scholar 

  17. H. Rashid, M. A. Mansoor, B. Haider, et al., Sep. Sci. Technol. (Philadelphia, PA, U. S.) 54, (2019). https://doi.org/10.1080/01496395.2019.1585876

  18. S. Liu, G. Wu, H. Chen, and M. Wang, Synth. Met. 162, 89 (2012).

    Article  CAS  Google Scholar 

  19. A. Cervellino, R. Frison, G. Cernuto, et al., J. Appl. Crystallogr. 47, 1755 (2014). https://doi.org/10.1107/S1600576714019840

    Article  CAS  Google Scholar 

  20. S. Nasrazadani and A. Raman, Corros. Sci. 34, 1355 (1993).

    Article  CAS  Google Scholar 

  21. C. Pecharroman, T. Gonzalez-Carreno, and J. E. Iglesias, Phys. Chem. Miner. 22, 21 (1995).

    Article  CAS  Google Scholar 

  22. J. W. Anthony, R. A. Bideaux, and K. W. Bladh, Magnetite. Handbook of Mineralogy (Mineralogical Society of America, Chantilly, VA, 2018).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The results of transmission electron microscopy were obtained using equipment of the Shared Facility Center, Voronezh State University. http://ckp.vsu.ru

Funding

This work was supported by the Russian Science Foundation (project no. 19-13-00442

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Nikolaev.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by I. Kudryavtsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilova, O.A., Nikolaev, A.M., Kovalenko, A.S. et al. Synthesis of Magnetic Nanopowders of Iron Oxide: Magnetite and Maghemite. Russ. J. Inorg. Chem. 65, 426–430 (2020). https://doi.org/10.1134/S0036023620030134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620030134

Keywords:

Navigation