Log in

Resonance Enhancement of the Faraday Effect in a Magnetoplasmonic Composite

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The paper presents the results of a theoretical and experimental study of the enhancement of the magneto-optical Faraday effect in a magnetoplasmonic nanocomposite, caused by localized plasmon resonance (LPR) in metal nanoparticles. The nanocomposite comprises a three-layer structure of self-assembled gold nanoparticles in a bismuth-substituted iron-garnet matrix. It is shown theoretically and experimentally that the enhancement of the magneto-optical Faraday effect is determined by the action of a magnetic field on the magnetoplasmonic composite as an effective medium as a whole. In this case, in the magnetoplasmonic nanocomposite, the Faraday effect is enhanced at the LPR wavelengths and is slightly weakened in the region of short wavelengths relative to the LPR. It is theoretically shown that the complex gyration index in the off-diagonal terms of the effective permittivity tensor for the magnetoplasmonic composite, in addition to rotation of the polarization plane, leads to the appearance of alternating ellipticity in the vicinity of the plasmon resonance, which is observed in the form of asymmetry of magneto-optical rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. A. Sharkawy, Sh. Shi, and D. W. Prather, “Heterostructure photonic crystals: Theory and applications,” Appl. Opt. 41, 7245 (2002). https://doi.org/10.1364/ao.41.007245

    Article  PubMed  Google Scholar 

  2. K. Uchida, H. Adachi, D. Kikuchi, S. Ito, Z. Qiu, S. Maekawa, and E. Saitoh, “Generation of spin currents by surface plasmon resonance,” Nat. Commun. 6, 5910 (2014). https://doi.org/10.1038/ncomms6910

    Article  CAS  Google Scholar 

  3. D. O. Ignatyeva, G. A. Knyazev, P. O. Kapralov, G. Dietler, S. K. Sekatskii, and V. I. Belotelov, “Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications,” Sci. Rep. 6, 28077 (2016). https://doi.org/10.1038/srep28077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. Kharratian, H. Urey, and M. C. Onbaşlı, “RGB magnetophotonic crystals for high-contrast magnetooptical spatial light modulators,” Sci. Rep. 9, 644 (2019). https://doi.org/10.1038/s41598-018-37317-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol. 13, 615–627 (1995). https://doi.org/10.1109/50.372474

    Article  Google Scholar 

  6. A. V. Baryshev, H. Uchida, and M. Inoue, “Peculiarities of plasmon-modified magneto-optical response of gold–garnet structures,” J. Opt. Soc. Am. B 30, 2371 (2013). https://doi.org/10.1364/josab.30.002371

    Article  CAS  Google Scholar 

  7. H. Uchida, Y. Masuda, R. Fujikawa, A. V. Baryshev, and M. Inoue, “Large enhancement of Faraday rotation by localized surface plasmon resonance in Au nanoparticles embedded in Bi:YIG film,” J. Magn. Magn. Mater. 321, 843–845 (2009). https://doi.org/10.1016/j.jmmm.2008.11.064

    Article  CAS  Google Scholar 

  8. R. Fujikawa, A. V. Baryshev, J. Kim, H. Uchida, and M. Inoue, “Contribution of the surface plasmon resonance to optical and magneto-optical properties of a Bi:YIG-Au nanostructure,” J. Appl. Phys. 103, 07D301 (2008). https://doi.org/10.1063/1.2829036

  9. S. Tkachuk, G. Lang, C. Krafft, O. Rabin, and I. Mayergoyz, “Plasmon resonance enhancement of Faraday rotation in thin garnet films,” J. Appl. Phys. 109, 07B717 (2011). https://doi.org/10.1063/1.3553944

  10. H. Zhu, M. Gao, C. Pang, R. Li, L. Chu, F. Ren, W. Qin, and F. Chen, “Strong Faraday rotation based on localized surface plasmon enhancement of embedded metallic nanoparticles in glass,” Small Sci. 2, 2100094 (2022). https://doi.org/10.1002/smsc.202100094

    Article  CAS  Google Scholar 

  11. J. Ya. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013). https://doi.org/10.1038/ncomms2609

    Article  CAS  PubMed  Google Scholar 

  12. V. I. Belotelov, L. L. Doskolovich, V. A. Kotov, E. A. Bezus, D. A. Bykov, and A. K. Zvezdin, “Faraday effect enhancement in metal-dielectric plasmonic systems,” (2007), Vol. 6581, p. 65810S. https://doi.org/10.1117/12.722812

  13. D. M. Krichevsky, A. N. Kalish, M. A. Kozhaev, D. A. Sylgacheva, A. N. Kuzmichev, S. A. Dagesyan, V. G. Achanta, E. Popova, N. Keller, and V. I. Belotelov, “Enhanced magneto-optical Faraday effect in two-dimensional magnetoplasmonic structures caused by orthogonal plasmonic oscillations,” Phys. Rev. B 102, 144408 (2020). https://doi.org/10.1103/physrevb.102.144408

    Article  CAS  Google Scholar 

  14. J. Bremer, V. Vaicikauskas, F. Hansteen, and O. Hunderi, “Influence of surface plasmons on the Faraday effect in bismuth-substituted yttrium iron garnet films,” J. Appl. Phys. 89, 6177–6182 (2001). https://doi.org/10.1063/1.1345864

    Article  CAS  Google Scholar 

  15. T. V. Mikhailova, S. D. Lyashko, S. V. Tomilin, A. N. Shaposhnikov, A. V. Karavainikov, and V. N. Berzhansky, “Hybrid states of Tamm plasmon polaritons in nanostructures with Bi-substituted iron garnets,” J. Phys.: Conf. Ser. 1389, 012103 (2019). https://doi.org/10.1088/1742-6596/1389/1/012103

    Article  CAS  Google Scholar 

  16. S. Tomilin, A. Karavaynikov, S. Lyashko, O. Tomilina, V. Berzhansky, A. Gusev, W. Linert, and A. Yanovsky, “Asymmetric magneto-optical rotation in magnetoplasmonic nanocomposites,” J. Compos. Sci. 7, 287 (2023). https://doi.org/10.3390/jcs7070287

    Article  CAS  Google Scholar 

  17. S. V. Tomilin, V. N. Berzhansky, A. N. Shaposhnikov, A. R. Prokopov, A. V. Karavaynikov, E. T. Milyukova, T. V. Mikhailova, and O. A. Tomilina, “Vertical displacement of the magnetooptical hysteresis loop in the magnetoplasmonic nanocomposite,” Phys. Solid State 62, 144–152 (2020). https://doi.org/10.1134/s1063783420010345

    Article  CAS  Google Scholar 

  18. S. V. Tomilin, V. N. Berzhansky, A. N. Shaposhnikov, S. D. Lyashko, T. V. Mikhailova, and O. A. Tomilina, “Spectral properties of magneto-plasmonic nanocomposite. Vertical shift of magneto-optical hysteresis loop,” J. Phys.: Conf. Ser. 1410, 012122 (2019). https://doi.org/10.1088/1742-6596/1410/1/012122

    Article  CAS  Google Scholar 

  19. O. A. Tomilina, V. N. Berzhansky, and S. V. Tomilin, “The influence of dielectric environment on spectral shift of localized plasmonic resonance,” J. Phys.: Conf. Ser. 1695, 012138 (2020). https://doi.org/10.1088/1742-6596/1695/1/012138

    Article  Google Scholar 

  20. A. V. Baryshev and A. M. Merzlikin, “Tunable plasmonic thin magneto-optical wave plate,” J. Opt. Soc. Am. B 33, 1399 (2016). https://doi.org/10.1364/josab.33.001399

    Article  Google Scholar 

  21. A. K. Zvezdin and V. A. Kotov, Magneto-Optics of Thin Films (Nauka, Moscow, 1988).

    Google Scholar 

  22. S. V. Tomilin, A. V. Karavaynikov, S. D. Lyashko, E. T. Milyukova, O. A. Tomilina, A. S. Yanovsky, V. I. Belotelov, and V. N. Berzhansky, “Giant enhancement of the Faraday effect in a magnetoplasmonic nanocomposite,” Opt. Mater. Express 12, 1522 (2022). https://doi.org/10.1364/ome.446392

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a grant from the State Council of the Republic of Crimea, resolution no. p653-2/23 dated January 30, 2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Tomilin.

Ethics declarations

The authors of this work declare that they have no conflict of interest.

Additional information

Translated by E. Chernokozhin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomilin, S.V., Karavaynikov, A.V., Lyashko, S.D. et al. Resonance Enhancement of the Faraday Effect in a Magnetoplasmonic Composite. Phys. Metals Metallogr. 125, 254–260 (2024). https://doi.org/10.1134/S0031918X23603001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23603001

Keywords:

Navigation