Log in

Superparamagnetism of Fe3O4–Fe3 – xTixO4 Composites: Micromagnetic Modeling

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract—The magnetic properties of Fe3O4–Fe3 – xTixO4 composites synthesized by various methods were simulated based on the model of an ensemble of magnetostatically interacting particles. The results are in good agreement with the hysteresis characteristics of the samples calculated earlier in the framework of the model of chemically heterogeneous two-phase particles. It is shown that the used approach is also applicable to the samples consisting mainly of superparamagnetic particles in which the saturation remanent magnetization is provided by the particles blocked due to the magnetostatic interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Y. Zhong, X. Liang, Y. Zhong, J. Zhu, S. Zhu, P. Yuan, H. He, and J. Zhang, “Heterogeneous UV/Fenton degradation of TBBPA catalyzed by titanomagnetite: Catalyst characterization, performance and degradation products,” Water Res. 46, 4633–4644 (2012).

    Article  CAS  Google Scholar 

  2. J. Zhang, C. Zhang, G. Wei, C. Zhang, J. Zhu, H. He, and X. Liang, “Catalytic activity of titanomagnetite in heterogeneous fenton reaction: Contribution from structural Fe2+ and Fe3+,” J. Nanosci. Nanotechnol. 17, 7015–7020 (2017).

    Article  CAS  Google Scholar 

  3. D. Azarifar, Y. Abbasi, and O. Badalkhani, “Sulfonic acid–functionalized titanomagnetite nanoparticles as recyclable heterogeneous acid catalyst for one–pot solvent–free synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones,” J. Iran. Chem. Soc. 13, 2029–2038 (2016).

    Article  CAS  Google Scholar 

  4. D. Azarifar, R. Asadpoor, O. Badalkhani, M. Jaymand, E. Tavakoli, and M. Bazouleh, “Sulfamic-acid-functionalized Fe3 – xTixO4 nanoparticles as novel magnetic catalyst for the synthesis of hexahydroquinolines under solvent-free condition,” Chem. Select 3, 13722–13728 (2018).

    CAS  Google Scholar 

  5. D. Azarifar, O. Badalkhani, and Y. Abbasi, “Silica-modified magnetite Fe3O4 nanoparticles grafted with sulfamic acid functional groups: an efficient heterogeneous catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-one and tetrahydrobenzo[b]pyran derivatives,” J. Sulfur Chem. 37, 656–673 (2016).

    Article  CAS  Google Scholar 

  6. J. Liu, C. I. Pearce, C. Liu, Z. Wang, L. Shi, E. Arenholz, and K. M. Rosso, “Fe(3 – x)TixO4 nanoparticles as tunable probes of microbial metal oxidation,” J. Am. Chem. Soc. 135, 8896–8907 (2013).

    Article  CAS  Google Scholar 

  7. C. I. Pearce, O. Qafoku, J. Liu, E. Arenholz, S. M. Heald, R. K. Kukkadapu, C. A. Gorski, C. M. B. Henderson, and K. M. Rosso, “Synthesis and properties of titanomagnetite (Fe(3 – x)TixO4) nanoparticles: A tunable solid-state Fe(II/III) redox system,” J. Colloid Interface Sci. 387, 24–38 (2012).

    Article  CAS  Google Scholar 

  8. M. W. McElhinny and P. L. McFadden, Paleomagnetism: Continents and Oceans (Academic Press, San Diego, 2000), p. 386.

    Google Scholar 

  9. P. Kharitonskii, S. Kirillova, K. Gareev, A. Kamzin, A. Gurylev, A. Kosterov, E. Sergienko, A. Valiullin, and E. Shevchenko, “Magnetic granulometry and Mössbauer spectroscopy of synthetic FemOn–TiO2 composites,” IEEE Trans. Magn. 56, 7200209 (2020).

    Article  CAS  Google Scholar 

  10. P. V. Kharitonskii, A. A. Kosterov, A. K. Gurylev, K. G. Gareev, S. A. Kirillova, N. A. Zolotov, and Yu. A. Anikieva, “Magnetic states of two-phase synthesized FemOn–Fe3 – xTixO4 nanoparticles: experimental and theoretical analysis,” Fiz. Tv. Tela 62 (9), 1527–1530 (2020).

    Google Scholar 

  11. P. Kharitonskii, N. Zolotov, S. Kirillova, K. Gareev, A. Kosterov, E. Sergienko, S. Yanson, A. Ustinov, and A. Ralin, “Magnetic granulometry, Mössbauer spectroscopy, and theoretical modeling of magnetic states of FemOn–FemxTixOn composites,” Chinese J. Phys. 78, 271–296 (2022).

    Article  CAS  Google Scholar 

  12. P. V. Kharitonskii, Yu. A. Anikieva, N. A. Zolotov, K. G. Gareev, and A. Yu. Ralin, “Micromagnetic simulation of Fe3O4–Fe3 – xTixO4 composites,” Fiz. Tv. Tela 64 (9), 1323–1327 (2022).

    Google Scholar 

  13. H. Y. Hah, S. Gray, C. E. Johnson, J. A. Johnson, V. Kolesnichenko, P. Kucheryavy, and G. Goloverda, “Mössbauer spectroscopy of superparamagnetic Fe3O4 nanoparticles,” J. Magn. Magn. Mater. 539, 168382 (2021).

    Article  CAS  Google Scholar 

  14. D. J. Dunlop, “Superparamagnetic and single-domain threshold sizes in magnetite,” J. Geophys. Res. 78, 1780–1793 (1973).

    Article  Google Scholar 

  15. P. Kucheryavy, J. He, V. T. John, P. Maharjan, L. Spinu, G. Z. Goloverda, and V. L. Kolesnichenko, “Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents,” Langmuir 29, 710–716 (2013).

    Article  CAS  Google Scholar 

  16. C. E. Johnson, J. A. Johnson, H. Y. Hah, M. Cole, S. Gray, V. Kolesnichenko, P. Kucheryavy, and G. Goloverda, “Mössbauer studies of stoichiometry of Fe3O4: characterization of nanoparticles for biomedical applications,” Hyperfine Interact. 237, 27 (2016).

    Article  Google Scholar 

  17. I. A. Al-Omari, V. Narayanaswamy, S. Halder, H. H. Hamdeh, S. Alaabed, A. S. Kamzin, Gopi C. V. V. Muralee, A. Khaleel, B. Issa, and I. M. Obaidat, “Mössbauer investigations in hematite nanoparticles,” Bioint. Res. Appl. Chem. 12, 4626–4636 (2016).

    Google Scholar 

  18. A. Yu. Ralin and P. V. Kharitonskii, “Magnetic metastability of small inhomogeneous ferrimagnetic particles,” Fiz. Met. Metalloved. 78 (3), 38–43 (1994).

    CAS  Google Scholar 

  19. V. P. Shcherbakov, “On the distribution function of molecular fields in systems with randomly distributed centers of interaction,” Fiz. Met. Metalloved. 48 (6), 1134–1137 (1979).

    Google Scholar 

  20. A. S. Al’miev, A. Yu. Ralin, and P. V. Kharitonskii, “Distribution functions of dipole-dipole interaction fields of dilute magnets,” Fiz. Met. Metalloved. 78 (1), 28–34 (1994).

    Google Scholar 

  21. J. L. Kirschvink, D. S. Jones, and B. J. MacFadden, Magnetite Biomineralization and Magnetoreception in Organisms. A New Biomagnetism (Plenum, New York, 1985), p. 682.

    Book  Google Scholar 

  22. A. Yu. Ralin and P. V. Kharitonskii, “Effect of thermal fluctuations on the stability of the magnetic state of small two-phase ferrimagnetic particles,” Phys. Met. Metallogr. 93 (2), 109–114 (2002).

    Google Scholar 

  23. P. V. Kharitonskii, “Magnetostatic interaction of superparamagnetic particles scattered in a thin layer,” Fiz. Tv. Tela 39 (1), 185–186 (1997).

    CAS  Google Scholar 

  24. A. P. Roberts, T. P. Almeida, N. S. Church, R. J. Harrison, D. Heslop, Y. Li, J. Li, A. R. Muxworthy, W. Williams, and X. Zhao, “Resolving the origin of pseudo-single domain magnetic behavior,” J. Geophys. Res. Solid Earth 122, 9534–9558 (2017).

    Article  Google Scholar 

  25. M. Starowicz, P. Starowicz, J. Żukrowski, J. Przewoźnik, A. Lemański, C. Kapusta, and J. Banaś, “Electrochemical synthesis of magnetic iron oxide nanoparticles with controlled size,” J. Nanoparticle Res. 13, 7167–7176 (2011).

    Article  CAS  Google Scholar 

  26. A. P. Roberts, L. Tauxe, D. Heslop, X. Zhao, and Z. Jiang, “A critical appraisal of the “Day” diagram,” J. Geophys. Res. Solid Earth 123, 2618–2644 (2018).

    Article  Google Scholar 

  27. L. Néel, “Théorie du traînage magnétique des ferromagnétiques en grains fins avec application aux terres cuites,” Ann. Géophys. 5, 99–136 (1949).

    Google Scholar 

  28. P. V. Kharitonskii and A. M. Frolov, “Simulation of magnetostatic interaction in multilayer structures,” Izv. Vyssh. Uchebn. Zaved., Fiz. 53 (3-2), 197–200 (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Ralin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharitonskii, P.V., Gareev, K.G., Ralin, A.Y. et al. Superparamagnetism of Fe3O4–Fe3 – xTixO4 Composites: Micromagnetic Modeling. Phys. Metals Metallogr. 124, 46–52 (2023). https://doi.org/10.1134/S0031918X22601779

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22601779

Keywords:

Navigation