Log in

Modeling and an Experimental Study of the Frequency Dependences of the Impedance of Composite Wires

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Some results are presented for the computer-aided modeling of the frequency dependences of the impedance of a composite highly conductive weakly magnetic strand thin magnetic coating wire. Modeling was performed within a range of alternating current frequencies from 0.01 to 100 MHz in a broad interval of strand and coating specific electroconductivities and coating magnetic permeabilities. Two characteristic frequencies associated with the existence of two areas with different electrical and magnetic parameters, i.e., the strand and the coating were revealed. A convenient method of determining these frequencies is proposed. Modeling results were compared with the experimental frequency dependences of the impedance of a CuBe/FeCoNi composite wire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. S. Beach and A. E. Berkowitz, “Giant magnetic field dependent impedance of amorphous FeCoSiB wire,” Appl. Phys. Lett. 64, 3652–3654 (1994).

    Article  CAS  Google Scholar 

  2. R. S. Beach, N. Smith, C. L. Platt, F. Jeffers, A. E. Berkowitz, “Magneto-impedance effect in NiFe plated wire,” Appl. Phys. Lett. 68, 2753–2755 (1996).

    Article  CAS  Google Scholar 

  3. D. Kozejova, L. Fecova, P. Klein, R. Sabol, R. Hudak, I. Sulla, D. Mudronova, J. Galik, and R. Varga, “Biomedical applications of glass-coated microwires,” J. Magn. Magn. Mater. 470, 2–5 (2019).

    Article  CAS  Google Scholar 

  4. M. Vázquez and A. Hernando, “A soft magnetic wire for sensor applications,” J. Phys. D: Appl. Phys. 29, 939–949 (1996).

    Article  Google Scholar 

  5. A. V. Semirov, A. A. Moiseev, V. O. Kudryavtsev, D. A. Bukreev, N. P. Kovaleva, and N. V. Vasyukhno, “Component analysis of the impedance of a CoFeNbSiB magnetically soft conductor with a nonuniform magnetic structure,” Tech. Phys. 60, 767–771 (2015).

    Article  CAS  Google Scholar 

  6. N. Usov, A. Antonov, and A. Granovsky, “Theory of giant magneto-impedance effect in composite amorphous wire,” J. Magn. Magn. Mater. 171, 64–68 (1997).

    Article  CAS  Google Scholar 

  7. G. V. Kurlyandskaya, J. M. Barandiaran, J. Gutierrez, D. García, M. Vázquez, and V. O. Vas’kovskiy, “Magnetoimpedance effect in CoFeNi plated wire with ac field annealing destabilized domain structure,” J. Appl. Phys. 85, 5438–5440 (1999).

    Article  CAS  Google Scholar 

  8. A. S. Antonov, N. A. Buznikov, A. F. Prokoshin, A. L. Rakhmanov, I. T. Iakubov, and A. M. Yakunin, “Nonlinear magnetization reversal in copper-permalloy composite wires induced by a high-frequency current,” Tech. Phys. Lett. 27, 313–315 (2001).

    Article  CAS  Google Scholar 

  9. L. D. Landau and E. M. Lifshits, Electrodynamics of Continious Media (Nauka, Moscow, 1982).

    Google Scholar 

  10. A. Gromov and V. Korenivski, “Electromagnetic analysis of layered magnetic/conductor structures,” J. Phys. D: Appl. Phys. 33, 773–779 (2000).

    Article  CAS  Google Scholar 

  11. D.-X. Chen, L. Pascual, E. Fraga, M. Vazquez, and A. Hernando, “Magnetic and transport eddy-current anomalies in cylinders with core-and-shell regions,” J. Magn. Magn. Mater. 202, 385–396 (1999).

    Article  CAS  Google Scholar 

  12. S. O. Volchkov, A. A. Pasynkova, M. S. Derevyanko, D. A. Bukreev, N. V. Kozlov, A. V. Svalov, and A. V. Semirov, “Magnetoimpedance of CoFeCrSiB ribbon-based sensitive element with FeNi covering: Experiment and modeling,” Sensors 21, 6728 (2021).

    Article  CAS  Google Scholar 

  13. D. A. Bukreev, M. S. Derevyanko, A. A. Moiseev, A. V. Semirov, P. A. Savin, and G. V. Kurlyandskaya, “Magnetoimpedance and stress-impedance effects in amorphous CoFeSiB ribbons at elevated temperatures,” Materials 13, 3216 (2020).

    Article  CAS  Google Scholar 

  14. G. V. Kurlyandskaya, N. G. Bebenin, and V. O. Vas’kovsky, “Giant magnetic impedance of wires with a thin magnetic coating,” Phys. Met. Metallogr. 111, 133–154 (2011).

    Article  Google Scholar 

Download references

Funding

The modeling and measurements of the impedance of electrodeposited wires were carried out in the Irkutsk state University and supported by the Russian Scientific Foundation (grant no. 22-22-00709, https://rscf.ru/project/22-22-00709/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Bukreev.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukreev, D.A., Derevyanko, M.S., Moiseev, A.A. et al. Modeling and an Experimental Study of the Frequency Dependences of the Impedance of Composite Wires. Phys. Metals Metallogr. 123, 887–892 (2022). https://doi.org/10.1134/S0031918X22090022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22090022

Keywords:

Navigation