Log in

Modeling the Giant Magnetoimpedance Effect in Amorphous Microwires with Induced Magnetic Anisotropy

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The giant magnetoimpedance effect in a glass-coated Fe-based amorphous microwire annealed under stresses is theoretically studied. The magnetization distribution in a microwire is described within a model that takes into account the presence in the sample of two regions with different types of magnetic anisotropy. It is assumed that, in the central part of the microwire, the anisotropy is longitudinal and, in the surface region, an induced helicoidal anisotropy arises as a result of annealing. An expression for the impedance of the microwire with allowance for different permeabilities of the two regions is found. The obtained theoretical dependences of the impedance on an external field and frequency make it possible to qualitatively describe the results of experimental studies of the magnetoimpedance in glass-coated Fe-based amorphous microwires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. H. Wiesner and J. Schneider, “Magnetic properties of amorphous Fe–P alloys containing Ga, Ge, and As,” Phys. Status Solidi A 26, No. 1, 71–75 (1974).

    Article  CAS  Google Scholar 

  2. J. Schneider, H. Wiesner, and R. Gemperle, “Annealing effects on the magnetic properties of rapidly quenched transition metal alloys,” Phys. Status Solidi A 36, No. 1, 59–64 (1976).

    Article  Google Scholar 

  3. R. Gemperle, L. Kraus, and J. Schneider, “Magnetization reversal in amorphous (Fe1 – xNix)80P10B10 microwires,” Czech. J. Phys. B 28, No. 10, 1138–1145 (1978).

    Article  Google Scholar 

  4. A. P. Zhukov, M. Vázquez, J. Velázquez, H. Chiriac, and V. Larin, “The remagnetization process in thin and ultra-thin Fe-rich amorphous wires,” J. Magn. Magn. Mater. 151, Nos. 1–2, 132–138 (1995).

    Article  CAS  Google Scholar 

  5. J. González, N. Murillo, V. Larin, J. M. Barandiaran, M. Vázquez, and A. Hernando, “Magnetic bistability of glass-covered Fe-rich amorphous microwire: influence of heating treatments and applied tensile stress,” Sens. Actuators, A 59, Nos. 1–3, 97–100 (1997).

    Article  Google Scholar 

  6. R. S. Beach and A. E. Berkowitz, “Giant magnetic field dependent impedance of amorphous FeCoSiB wire,” Appl. Phys. Lett. 64, No. 26, 3652–3654 (1994).

    Article  CAS  Google Scholar 

  7. L. V. Panina and K. Mohri, “Magneto-impedance effect in amorphous wires,” Appl. Phys. Lett. 65, No. 9, 1189–1191 (1994).

    Article  CAS  Google Scholar 

  8. A. S. Antonov, S. N. Gadetskii, A. B. Granovskii, A. L. D’yachkov, V. P. Paramonov, N. S. Perov, A. F. Prokoshin, N. A. Usov, and A. N. Lagar’kov, “Giant magnetoimpedance in amorphous and nanocrystalline multilayers,” Phys. Met. Metallogr. 83, No. 6, 612–618 (1997).

    Google Scholar 

  9. M. Knobel, M. Vázquez, and L. Kraus, “Giant magnetoimpedance,” in Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (Elsevier, Amsterdam, 2003), Vol. 15, pp. 497–563.

    Google Scholar 

  10. G. V. Kurlyandskaya, N. G. Bebenin, and V. O. Vas’kovskii, “Giant magnetic impedance of wires with a thin magnetic coating,” Phys. Met. Metallogr. 111, No. 2, 133–154 (2011).

    Article  Google Scholar 

  11. A. V. Semirov, A. A. Moiseev, D. A. Bukreev, N. P. Kovaleva, N. V. Vasyukhno, and V. A. Nemirova “Asymmetric magnetoimpedance of a magnetically soft wire,” Phys. Met. Metallogr. 118, No. 6, 535–540 (2017).

    Article  CAS  Google Scholar 

  12. H. Chiriac and T. A. Óvári, “Amorphous glass-covered magnetic wires: preparation, properties, applications,” Prog. Mater. Sci. 40, No. 5, 333–407 (1996).

    Article  CAS  Google Scholar 

  13. V. Zhukova, J. M. Blanco, M. Ipatov, J. Gonzalez, M. Churyukanova, and A. Zhukov, “Engineering of magnetic softness and giant magnetoimpedance effect in Fe-rich microwires by stress-annealing,” Scr. Mater. 142, 10–14 (2018).

    Article  CAS  Google Scholar 

  14. V. Zhukova, J. M. Blanco, M. Ipatov, M. Churyukanova, S. Taskaev, and A. Zhukov, “Tailoring of magnetoimpedance effect and magnetic softness of Fe-rich glass-coated microwires by stress-annealing,” Sci. Rep. 8, 3202 (2018).

    Article  CAS  Google Scholar 

  15. V. Zhukova, J. M. Blanco, M. Ipatov, M. Churyukanova, J. Olivera, S. Taskaev, and A. Zhukov, “Optimization of high frequency magnetoimpedance effect of Fe-rich microwires by stress-annealing,” Intermetallics 94, 92‒98 (2018).

    Article  CAS  Google Scholar 

  16. V. Zhukova, P. Corte-Leon, M. Ipatov, J. M. Blanco, L. Gonzalez-Legarreta, and A. Zhukov, “Development of magnetic microwires for magnetic sensor applications,” Sensors. 19, No. 21, 4767 (2019).

    Article  CAS  Google Scholar 

  17. A. Zhukov, M. Ipatov, P. Corte-Leon, L. Gonzalez-Legarreta, J. M. Blanco, and V. Zhukova, “Soft magnetic microwires for sensor applications,” J. Magn. Magn. Mater. 498, 166180 (2000).

    Article  Google Scholar 

  18. V. Zhukova, P. Corte-Leon, L. González-Legarreta, M. Ipatov, A. Talaat, J. Gonzalez, A. Zhukov, J. M. Blanko, and J. Olivera, “Stress-induced magnetic anisotropy enabling engineering of magnetic softness gmi effect and domain wall dynamics of amorphous microwires,” Phys. Met. Metallogr. 121, No. 4, 316–321 (2020).

    Article  CAS  Google Scholar 

  19. M. Vázquez and A. Hernando, “A soft magnetic wire for sensor applications,” J. Phys. D: Appl. Phys. 29, No. 4, 939–949 (1996).

    Article  Google Scholar 

  20. N. A. Usov, A. S. Antonov, and A. N. Lagar’kov, “Theory of giant magneto-impedance effect in amorphous wires with different types of magnetic anisotropy,” J. Magn. Magn. Mater. 185, No. 2, 159–173 (1998).

    Article  CAS  Google Scholar 

  21. D. P. Makhnovskiy, L. V. Panina, and D. J. Mapps, “Field-dependent surface impedance tensor in amorphous wires with two types of magnetic anisotropy: Helical and circumferential,” Phys. Rev. B 63, No. 14, 144424 (2001).

    Article  Google Scholar 

  22. Landau, L.D. and Lifshits, E.M., Electrodynamics of Continuos Media (Pergamon, New York, 1960).

    Google Scholar 

  23. D. Ménard and A. Yelon, “Theory of longitudinal magnetoimpedance in wires,” J. Appl. Phys. 88, No. 2, 379–393 (2000).

    Article  Google Scholar 

  24. N. A. Buznikov, “Influence of bias current on off-diagonal magnetoimpedance in composite wires,” J. Supercond. Novel Magn. 31, No. 12, 4039–4045 (2018).

    Article  CAS  Google Scholar 

  25. N. A. Usov, A. S. Antonov, A. N. Lagar’kov, and A. B. Granovsky, “GMI spectra of amorphous wires with different types of magnetic anisotropy in the core and the shell regions,” J. Magn. Magn. Mater. 203, Nos. 1–3, 108–110 (1999).

    Article  CAS  Google Scholar 

  26. M. Vázquez and D.-X. Chen, “The magnetization reversal process in amorphous wires,” IEEE Trans. Magn. 31, No. 2, 1229–1239 (1995).

    Article  Google Scholar 

  27. L. G. C. Melo, D. Ménard, P. Ciureanu, A. Yelon, and R. W. Cochrane, “Coupled core–shell model of magnetoimpedance in wires,” J. Appl. Phys. 95, No. 3, 1331–1335 (2004).

    Article  CAS  Google Scholar 

  28. V. V. Popov, V. N. Berzhansky, H. V. Gomonay, and F. X. Qin, “Stress-induced magnetic hysteresis in amorphous microwires probed by microwave giant magnetoimpedance measurements,” J. Appl. Phys. 113, No. 17, 17A326 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Buznikov.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, V.V., Buznikov, N.A. Modeling the Giant Magnetoimpedance Effect in Amorphous Microwires with Induced Magnetic Anisotropy. Phys. Metals Metallogr. 121, 1033–1038 (2020). https://doi.org/10.1134/S0031918X20110071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20110071

Keywords:

Navigation