Log in

Specific features of magnetic order in a multiferroic compound CuCrO2 determined using NMR and NQR data for 63, 65Cu nuclei

  • Electrical and Magnetic Properties
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Results of studying the paramagnetic and ordered phases of a CuCrO2 single crystal using nuclear magnetic and nuclear quadrupole resonances on 63,65Cu nuclei are presented. The measurements have been carried out in wide ranges of temperature (T = 4.2–300 K) and magnetic-field strength (Н = 0–94 kOe), with the magnetic fields being directed along a and c axes of the crystal. The components of the electric-field gradient tensor and the magnetic-shift tensor (K a,c) have been determined. The temperature dependences K a(H || a) and K c(H || c) for the paramagnetic phase are described by the Curie–Weiss law and reproduce the behavior of the magnetic susceptibility (χa,c). The hyperfine field on a copper nucleus has been determined, which is equal to h a,c hf = 33 kOe/μB. Below the temperature Т N = 23.6 K, nuclear magnetic resonance and nuclear quadrupole resonance spectra for 63,65Cu nuclei have been recorded typical of helical magnetic structures, which are incommensurable with the lattice period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Poienar, F. Damay, C. Martin, V. Hardy, A. Maignan, and G. Andre, “Structural and magnetic properties of CuCr1–x MgxO2 by neutron powder diffraction,” Phys. Rev. B: Condens. Matter Mater. Phys. 79, 014412 (2009).

    Article  Google Scholar 

  2. H. Kadowaki, H. Kikuchi, and Y. Ajiro, “Neutron powder diffraction study of the two-dimensional triangular lattice antiferromagnet CuCrO2,” J. Phys.: Condens. Matter 2, 4485–4493 (1990).

    Google Scholar 

  3. M. Frontzek, G. Ehlers, A. Podlesnyak, H. Cao, M. Matsuda, O. Zaharko, N. Aliouane, S. Barilo, and S. V. Shiryaev, “Magnetic structure of CuCrO2: A single crystal neutron diffraction study,” J. Phys.: Condens. Matter 24, 016004 (2012).

    Google Scholar 

  4. S. I. Sek, Y. Onose, and Y. Tokura, “Spin-driven ferroelectricity in triangular lattice antiferromagnets ACrO2 (A = Cu, Ag, Li, or Na),” Phys. Rev. Lett. 101, 067204 (2008).

    Article  Google Scholar 

  5. K. Kimura, H. Nakamura, K. Ohgushi, and T. Kimura, “Magnetoelectric control of spin-chiral ferroelectric domains in a triangular lattice antiferromagnet,” Phys. Rev. B: Condens. Matter Mater. Phys. 78, 140401 (2008).

    Article  Google Scholar 

  6. H. Katsura, N. Nagaosa, and A. V. Balatsky, “Spin current and magnetoelectric effect in noncollinear magnets,” Phys. Rev. Lett. 95, 057205 (2005).

    Article  Google Scholar 

  7. T. Arima, “Ferroelectricity induced by proper-screw type magnetic order,” J. Phys. Soc. Jpn. 76, 073702 (2007).

    Article  Google Scholar 

  8. M. Frontzek, J. T. Haraldsen, A. Podlesnyak, M. Matsuda, A. D. Christianson, R. S. Fishman, A. S. Sefat, Y. Qiu, J. R. D. Copley, S. Barilo, S. V. Shiryaev, and G. Ehlers, “Magnetic excitations in the geometric frustrated multiferroic CuCrO2,” Phys. Rev. B: Condens. Matter Mater. Phys. 84, 094448 (2011).

    Article  Google Scholar 

  9. M. Soda, K. Kimura, T. Kimura, M. Matsuura, and K. Hirota, “Electric control of spin helicity in multiferroic triangular lattice antiferromagnet CuCrO2 with proper-screw order,” J. Phys. Soc. Jpn. 78, 124703 (2009).

    Article  Google Scholar 

  10. K. Kimura, T. Otani, H. Nakamura, Y. Wakabayashi, and T. Kimura, “Lattice distortion coupled with magnetic ordering in a triangular lattice antiferromagnet CuCrO2,” J. Phys. Soc. Jpn. 78, 11113710 (2009).

    Google Scholar 

  11. K. Kimura, H. Nakamura, S. Kimura, M. Hagiwara, and T. Kimura, “Tuning ferroelectric polarization reversal by electric and magnetic fields in CuCrO2,” Phys. Rev. Lett. 103, 107201 (2009).

    Article  Google Scholar 

  12. A. M. Vasiliev, L. A. Prozorova, and L. E. Svistov, “ESR of the quasi-two-dimensional antiferromagnet CuCrO2 with a triangular lattice,” Phys. Rev. B: Condens. Matter Mater. Phys. 88, 144403 (2013).

    Article  Google Scholar 

  13. R. B. Creel, S. L. Segel, R. J. Schoenberger, R. G. Barnes, and D. R. Torgeson, “Nuclear magnetic resonance study of the transition metal monoborides. II. Nuclear electric quadrupole and magnetic shift parameters of the metal nuclei in VB, CoB, and NbB,” J. Chem. Phys. 60, 2310 (1974).

    Article  Google Scholar 

  14. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961).

    Google Scholar 

  15. C. P. Slichter, Principles of Magnetic Resonance (Springer-Verlag, Berlin, 1990).

    Book  Google Scholar 

  16. A. F. Sadykov, A. P. Gerashchenko, Yu. V. Piskunov, V. V. Ogloblichev, A. G. Smol’nikov, S. V. Verkhovskii, A. L. Buzlukov, I. Yu. Arapova, Y. Furukawa, A. Yu. Yakubovskii, and A. A. Bush, ‘Magnetic structure of the low-dimensional magnet NaCu2O2: 63,65Cu and 23Na NMR studies,” J. Exp. Theor. Phys. 119, 870–879 (2014).

    Article  Google Scholar 

  17. A. F. Sadykov, A. P. Gerashchenko, Yu. V. Piskunov, V. V. Ogloblichev, A. G. Smol’nikov, S. V. Verkhovskii, A. Yu. Yakubovskii, E. A. Tishchenko, and A. A. Bush, “Magnetic structure of low-dimensional LiCu2O2 multiferroic according to 63,65Cu and 7Li NMR studies,” J. Exp. Theor. Phys. 115, 666–672 (2012).

    Article  Google Scholar 

  18. Yu. Sakhratov, L. Svistov, P. Kuhns, H. Zhou, and A. Reyes, “Magnetic structure and domain conversion of the quasi-2D frustrated antiferromagnet CuCrO2 probed by NMR,” J. Exp. Theor. Phys. 119, 880–890 (2014).

    Article  Google Scholar 

  19. R. Blinc, “Magnetic resonance and relaxation in structurally incommensurate systems,” Phys. Rep. 79, 331–398 (1981).

    Article  Google Scholar 

  20. J. Xue-Fan, L. **an-Feng, W. Yin-Zhong, and H. Jiu-Rong, “Exchange coupling and helical spin order in the triangular lattice antiferromagnet CuCrO2 using first principles,” Chin. Phys. B 21, 077502 (2012).

    Article  Google Scholar 

  21. A. G. Smol’nikov, V. V. Ogloblichev, S. V. Verkhovskii, K. N. Mikhalev, A. Yu. Yakubovskii, K. Kumagai, Y. Furukawa, A. F. Sadykov, Yu. V. Piskunov, A. P. Gerashchenko, S. N. Barilo, and S. V. Shiryaev, “53Cr NMR study of CuCrO2 multiferroic,” JETP Lett. 102, 674–677 (2015).

    Article  Google Scholar 

  22. A. Zorko, J. Kokalj, M. Komelj, O. Adamopoulos, H. Luetkens, D. Arcon, and A. Lappas, “Magnetic inhomogeneity on a triangular lattice: The magneticexchange versus the elastic energy and the role of disorder,” Sci. Rep. 5, Art. 9272 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Smol’nikov.

Additional information

Original Russian Text © A.G. Smol’nikov, V.V. Ogloblichev, S.V. Verkhovskii, K.N. Mikhalev, A.Yu. Yakubovskii, Y. Furukawa, Yu.V. Piskunov, A.F. Sadykov, S.N. Barilo, S.V. Shiryaev, 2017, published in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 2, pp. 142–150.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smol’nikov, A.G., Ogloblichev, V.V., Verkhovskii, S.V. et al. Specific features of magnetic order in a multiferroic compound CuCrO2 determined using NMR and NQR data for 63, 65Cu nuclei. Phys. Metals Metallogr. 118, 134–142 (2017). https://doi.org/10.1134/S0031918X17020120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17020120

Keywords

Navigation