Log in

Coelom Metamerism in Echinodermata

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

Within all major taxa of Bilateria, there are forms with coelomic metamerism. This suggests that coelomic metamerism was characteristic of the common ancestor of Bilateria. Among deuterostomes, metamerism is clearly expressed in chordates, and elements of metamerism are present in hemichordates. Do echinoderms have remnants of coelomic metamerism that was inherited from the common ancestor of Bilateria? The coelomic system of echinoderms includes several metameric coelomic rings located along the oral-aboral axis, namely: the axocoelomic ring, the hydrocoelomic ring, 2 to 6 coelomic rings originating from the left somatocoel, and one epigastric ring originating from the right somatocoel. Thus, in echinoderms, there is a dissymmetrical metamerism, derived from the original metamerism of the common ancestors of Deuterostomia and, possibly, the common ancestors of Bilateria. The problem of dexiothetism as the cause for the formation of coelomic dissymmetry in echinoderms is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Adachi, S., Niimi, I., Sakai, Y., Sato, F., Minokawa, T., Urata, M., Sehara-Fujisawa, A., Kobayashi, I., and Yamaguchi, M., Anteroposterior molecular registries in ectoderm of the echinus rudiment, Dev. Dyn., 2018, vol. 247, pp. 1297–1307.

    Google Scholar 

  2. Adoutte, A., Balavoine, G., Lartillot, N., Lespinet, O., Prud’homme, B., and de Rosa, R., The new animal phylogeny: reliability and implications, Proc. Nat. Acad. Sci. U. S. A., 2000, vol. 97, no. 9, pp. 4453–4456.

    Google Scholar 

  3. Aguinaldo, A.M.A., Turbeville, J.M., Lindford, L.S., Rivera, M.C., Garey, J.R., Raff, R.A., et al., Evidence for a clade of nematodes, arthropods and other moulting animals, Nature, 1997, vol. 387, pp. 489–493.

    Google Scholar 

  4. Arendt, D., Hox genes and body segmentation. An ancient gene cluster controls the formation of repetitive body parts in a sea anemone, Science, 2018, vol. 361, no. 6409, pp. 1377–1380.

    Google Scholar 

  5. Baguñà, J., Martinez, P., Paps, J., and Riutort, M., Back in time: a new systematic proposal for the Bilateria, Philos. Trans. R. Soc., B, 2008, vol. 363, pp. 1481–1491.

  6. Balavoine, G., Segment formation in annelids: patterns, processes and evolution, Int. J. Dev. Biol., 2014, vol. 58, pp. 469–483.

    Google Scholar 

  7. Balavoine, G. and Adoutte, A., The segmented Urbilateria: a testable scenario, Integr. Comp. Biol., 2003, no. 43, pp. 137–147.

  8. Balser, E.J. and Ruppert, E.E., Ultrastructure of axial vascular and coelomic organs in Comasterid Featherstars (Echinodermata: Crinoidea), Acta Zool. (Stockholm), 1993, vol. 74, no. 2, pp. 87–101.

    Google Scholar 

  9. Balser, E.J., Ruppert, E.E., and Jaeckle, W.B., Ultrastructure of auricularia larval coeloms: evidence for the presence of an axocoel, Biol. Bull., 1993, vol. 185, no. 1, pp. 86–96.

    Google Scholar 

  10. Barrois, J., Recherches sur le Développement de la Comatule (C. mediterranea), Rec. Zool. Suisse, 1888, no. 4, pp. 545–651.

  11. Bather, F.A., The Echinoderma, in A Treatise on Zoology, London: Adam and Charles Black, 1900, pt. 3.

  12. Beaster-Jones, L., Horton, A.C., Gibson-Brown, J.J., Holland, N.D., and Holland, L., The amphioxus T-box gene, AmphiTbx15/18/22, illuminates the origins of chordate segmentation, Evol. Dev., 2006, vol. 8, no. 2, pp. 119–129.

    Google Scholar 

  13. Beklemishev, V.N., Osnovy sravnitel’noi anatomii bespozvonochnykh. Tom 1. Promorfologiya (Principles of Comparative Anatomy of Invertebrates, Vol. 1: Promorphology), Moscow: Nauka, 1964; Beklemishev, V.N., Osnovy sravnitel’noi anatomii bespozvonochnykh. Tom 2. Organologiya (Principles of Comparative Anatomy of Invertebrates, Vol. 2: Organology), Moscow: Nauka, 1964.

  14. Beneden van, E., Recheres sur le développment des Arachnactis. Contribution à la morphologie de Cérianthides, Archs. Biol. Paris, 1891, no. 11, pp. 115–146.

  15. Benito, J. and Pardos, F., Hemichordata, New York: Wiley, 1997, vol. 15, pp. 15–101.

    Google Scholar 

  16. Blair, S.S., Segmentation in animals, Curr. Biol., 2008, vol. 18, no. 21, pp. R991–995.

    Google Scholar 

  17. Brooks, W.K. and Grave, C., Ophiura brevispina, Mem. Nat. Acad. Sci. Wash., 1899, no. 5, pp. 79–100.

  18. Burdon-Jones, C., Development and biology of the larva of Saccoglossus horsti (Enteropneusta), Philos. Trans. R. Soc., B, 1952, vol. 236, pp. 553–589.

  19. Bury, H., The early stages in the development of Antedon rosacea, Philos. Trans. R. Soc., B, 1888, no. 179, pp. 257–301.

  20. Bury, H., Metamorphosis of echinoderms, Quart. J. Microsc. Sci., 1895, no. 38, pp. 45–137.

  21. Cameron, R.A., Rowen, L., Nesbitt, R., Bloom, S., Rast, J.P., Berney, K., Arenas-Mena, C., Martinez, P., Lucas, S., Richardson, P.M., Davidson, E.H., Peterson, K.J., and Hood, L., Unusual gene order and organization of the sea urchin Hox cluster, J. Exp. Zool. B (Mol. Dev. Evol.), 2006, vol. 306, pp. 45–58.

  22. Chia, F.S., The embryology of a brooding starfish Leptasterias hexactis Stimpson, Acta Zool., 1968, vol. 49, no. 3, pp. 321–364.

    Google Scholar 

  23. Clark, H.L., Synapta vivipara, a contribution of the morphology of echinoderms, Mem. Boston Soc. Nat. Hist., 1898, no. 5, pp. 53–88.

  24. Couso, J.P., Segmentation, metamerism and the Cambrian explosion, Int. J. Dev. Biol., 2009, no. 53, pp. 1305–1316.

  25. Cuénot, L., Études anatomiques et morphologiques sur les ophiures, Arch. Zool. Exp. Gen. Ser., 1888, no. 6, pp. 33–82.

  26. Cuénot, L., Études morphologiques sur les echinoderms, Arch. Biol., 1891, no. 11, pp. 313–680.

  27. David, B. and Mooi, R., How Hox genes can shed light on the place of echinoderms among the deuterostomes, EvoDevo, 2014, vol. 5, p. 22.

    Google Scholar 

  28. Davis, G.K. and Patel, N.H., The origin and evolution of segmentation, Trends Cell Biol., 1999, no. 9, pp. M68–M72.

  29. Dunn, C.W., Hejnol, A., Matus, D.Q., Pang, K., Browne, W.E., Smith, S.A., et al., Broad phylogenomic sampling improves resolution of the animal tree of life, Nature, 2008, vol. 452, no. 7188, pp. 745–749.

    Google Scholar 

  30. Dunn, C.W., Giribet, G., Edgecombe, G.D., and Hejnol, A., Animal phylogeny and its evolutionary implications, Annu. Rev. Ecol. Evol. Syst., 2014, vol. 45, no. 1, pp. 371–395.

    Google Scholar 

  31. Ezhova, O.V. and Malakhov, V.V., The nephridial hypothesis of the gill slit origin, J. Exp. Zool. B (Mol. Dev. Evol.), 2015, no. 324, pp. 647–652.

  32. Ezhova, O.V. and Malakhov, V.V., Axial complex of Crinoidea: comparison with other Ambulacraria, J. Morphol., 2020, vol. 281, no. 11, pp. 1456–1475.

    Google Scholar 

  33. Ezhova, O.V., Lavrova, E.A., and Malakhov, V.V., Microscopic anatomy of the axial complex in the starfish Asterias rubens (Echinodermata, Asteroidea), Biol. Bull. (Moscow), 2013, vol. 40, no. 8, pp. 643–653. https://doi.org/10.1134/S1062359013080049

    Article  Google Scholar 

  34. Ezhova, O.V., Lavrova, E.A., and Malakhov, V.V., The morphology of the axial complex and associated structures in Asterozoa (Asteroidea, Echinoidea, Ophiuroidea), Russ. J. Mar. Biol., 2014, vol. 40, no. 3, pp. 153–164. https://doi.org/10.1134/S1063074014030043

    Article  Google Scholar 

  35. Ezhova, O.V., Lavrova, E.A., Ershova, N.A., and Mala-khov, V.V., Microscopic anatomy of the axial complex and associated structures in the brittle star Ophiura robusta Ayres, 1854 (Echinodermata, Ophiuroidea), Zoomorphology, 2015, vol. 134, no. 2, pp. 247–258.

    Google Scholar 

  36. Ezhova, O.V., Egorova, E.A., and Malakhov, V.V., Transformations of the axial complex of ophiuroids as a result of shifting of the madreporite to the oral side, Biol. Bull. (Moscow), 2016, vol. 43, no. 6, pp. 494–502. https://doi.org/10.1134/S1062359016060091

    Article  Google Scholar 

  37. Ezhova, O.V., Ershova, N.A., and Malakhov, V.V., Microscopic anatomy of the axial complex and associated structures in the sea cucumber Chiridota laevis Fabricius, 1780 (Echinodermata, Holothuroidea), Zoomorphology, 2017, vol. 136, no. 2, pp. 205–217.

    Google Scholar 

  38. Ezhova, O.V., Malakhov, V.V., and Egorova, E.A., Axial complex and associated structures of the sea urchin Strongylocentrotus pallidus (Sars, G.O. 1871) (Echinodermata: Echinoidea), J. Morphol., 2018, vol. 279, no. 6, pp. 792–808.

    Google Scholar 

  39. Fedotov, D.M., On the problem of the homology of echinoderms, enteropneusts, and chordates, Izv. Biol. Nauchno-Issled. Inst. Perm. Univ., 1923, vol. 2, no. 1, pp. 1–11.

  40. Fedotov, D.M., Zur morphologie des axialen organkomplexes der Echinodermen, Z. Wiss. Zool., 1924, vol. 123, pp. 209–304.

    Google Scholar 

  41. Fedotov, D.M., Tip iglokozhikh (Echinodermata). Rukovodstvo po zoologii (Phylum Echinodermata: Zoology Guide), Moscow: Sovetskaya Nauka, 1951, vol. 3, no. 2, pp. 460–591.

    Google Scholar 

  42. Franz, V., Morphologie der Akranier, Ergebn. Anat. und Entwickl. Gesch., 1927, vol. 27, pp. 464–568.

    Google Scholar 

  43. Gemmill, J.F., The development of the starfish Solaster endeca Forbes, Trans. Zool. Soc., 1912, vol. 20, no. 1, pp. 1–71.

    Google Scholar 

  44. Gemmill, J.F., The development and certain points in the adult structure of the starfish Asterias rubens L, Philos. Trans. R. Soc. London, 1914, no. 205, pp. 213–294.

  45. Gemmill, J.F., Double hydrocoele in the development and metamorphosis in the larva of Asterias rubens L., Quart. J. Microsc. Sci., 1915, no. 61, pp. 51–80.

  46. Gemmill, J.F., The development of the starfish Crossaster papposus Müller and Troschel, Quart. J. Microsc. Sci., 1920, no. 64, pp. 155–189.

  47. Giribet, G., New animal phylogeny: future challenges for animal phylogeny in the age of phylogenomics, Org. Diversity Evol., 2015, vol. 16, no. 2, pp. 419–426.

    Google Scholar 

  48. Gislén, T., Affinities between the Echinodermata, Enteropneusta and Chordonia, Zool. Bijdr. Upps., 1930, vol. 12, pp. 199–304.

    Google Scholar 

  49. Goethe, J.W., Zur Naturwissenschaft uberhaupt, besonders zur Morphologie: Erfahrung, Betrachtung, Folgerung, durch Lebensereignisse verbunden, Stuttgart: J.E. Gotta, 1817, vol. 1.

  50. Goethe, J.W., Izbrannye sochineniya po estestvoznaniyu (Selected Works on Natural Science), Moscow: Akad. Nauk SSSR, 1957.

  51. Goto, S., The metamorphosis of Asterias pallida with special reference to the fate of the body cavities, J. Coll. Sci. Imp. Univ. Tokyo, 1898, no. 10, pp. 239–278.

  52. Halanych, K.M., The new view of animal phylogeny, Annu. Rev. Ecol. Evol. Syst., 2004, vol. 35, pp. 229–256.

    Google Scholar 

  53. Halanych, K.M., Bacheller, J.D., Aguinaldo, A.M.A., Liva, S.M., Hillis, D.M., and Lake, J.A., Evidence from 18s ribosomal DNA that the lophophorates are protostome animals, Science, 1995, vol. 267, no. 5204, pp. 1641–1643.

    Google Scholar 

  54. Hamann, O., Beiträge zur Histologie der Echinodermen, No. 3: Die Anatomie und Histologie der Echiniden und Spatangiden, Jena: G. Fischer, 1887.

    Google Scholar 

  55. Hatschek, B., Studien über Entwicklung des Amphioxus, Arb. Zool. Inst. Univ. Wien Zool. Sta. Triest., 1881, vol. 4, pp. 1–88.

    Google Scholar 

  56. He, S., del Viso, F., Chen, C.-Y., Ikmi, A., Kroesen, A.E., and Gibson, M.C., An axial Hox code controls tissue segmentation and body patterning in Nematostella vectensis, Science, 2018, vol. 361, pp. 1377–1380.

    Google Scholar 

  57. Heinzeller, T. and Welsch, U., Microscopic Anatomy of Invertebrates, Vol. 14: Echinodermata, New York: Wiley, 1994.

    Google Scholar 

  58. Hérouard, E., Recherches sur les holothuries des côtes de France, Arch. Zool. Exp. Gen. Ser., 1889, no. 7, pp. 573–704.

  59. Hessling, R. and Westheide, W., Are Echiura derived from a segmented ancestor? Immunohistochemical analysis of the nervous system in developmental stages of Bonellia viridis, J. Morphol., 2002, vol. 252, pp. 100–113.

    Google Scholar 

  60. Holland, L.Z., Holland, N.D., and Gilland, E., Amphioxus and the evolution of head segmentation, Integr. Comp. Biol., 2008, vol. 48, no. 5, pp. 630–646.

    Google Scholar 

  61. Horst van der, C.J. Hemichordata, in Klassen und Ordnungen des Tierreichs, Bronns, H.G., Ed., Leipzig: Leipzig. Akademische Verlagsgesellschaft M. B. H., 1939.

    Google Scholar 

  62. Hörstadius, S., Über die Entwicklung von Astropecten aurantiacus L., Pubbl. Staz. Zool. Napoli, 1939, vol. 17, no. 2, pp. 221–312.

    Google Scholar 

  63. Hyman, L.H., Echinodermata, Vol. 4 of The Invertebrates. New York: McGraw-Hill, 1955.

  64. Hyman, L.H., Phylum Hemichordata, Vol. 5 of The Invertebrates: Smaller Coelomate Groups. New York: McGraw-Hill, 1959, pp. 72–207.

  65. Ivanova-Kazas, O.M., Sravnitel’naya embriologiya bespozvonochnykh zhivotnykh. Tom 3. Iglokozhie i polukhordovye (Comparative Embryology of Invertebrates, Vol. 3: Echinodermata and Hemichordata), Moscow: Nauka, 1978.

  66. Jefferies, R.P.S., A new calcichordate from the Ordovician of bohemia and its anatomy, adaptations and relationships, Biol. J. Linn. Soc., 1972, no. 4, pp. 69–115.

  67. Jefferies, R.P.S., The Ancestry of the Vertebrates, London: Br. Mus. Nat. Hist., 1986.

  68. Jefferies, R.P.S., A defence of the calcichordates, Lethaia, 1997, vol. 30, pp. 1–10.

    Google Scholar 

  69. Jefferies, R.P.S., Brown, N.A., and Daley, P.E.J., The early phylogeny of chordates and echinoderms and the origin of chordate left-right asymmetry and bilateral symmetry, Acta Zool. (Stockholm), 1996, vol. 77, .

    Google Scholar 

  70. Kaul-Strehlow, S. and Stach, T., A detailed description of the development of the hemichordate Saccoglossus kowalevskii using SEM, TEM, histology and 3D-reconstructions, Front. Zool., 2013, vol. 10, no. 53, pp. 1–31.

    Google Scholar 

  71. Kikuchi, M., Omori, A., Kurokawa, D., and Akasaka, K., Patterning of anteroposterior body axis displayed in the expression of Hox genes in sea cucumber Apostichopus japonicus, Dev. Gen. Evol., 2015, vol. 225, no. 5, pp. 275–286.

    Google Scholar 

  72. Kolata, D.R., Frest, T.J., and Mapes, R.H., The youngest Carpoid: occurrence, affinities, and life mode of a Pennsylvanian (Morrowan) Mitrate from Oklahoma, J. Paleontol., 1991, vol. 65, no. 5, pp. 844–855.

    Google Scholar 

  73. Kristof, A., Wollesen, T., and Wanninger, A., Segmental mode of neural patterning in Sipuncula, Curr. Biol., 2008, no. 18, pp. 1129–1132.

  74. Lameere, A., Une théorie zoologique, Bull. Sci. Fr. Belg., 1916, no. 40, pp. 378–431.

  75. Ludwig, H., Neue Beiträge zur Anatomie der Ophiuren, Z. Wiss. Zool., 1880, vol. 34, pp. 57–89.

    Google Scholar 

  76. Lankester, E. Ray and Willey, A., The development of the atrial chamber of Amphioxus, Quart. J. Microsc. Sci. New Ser., 1890, vol. 31, pp. 445–466.

    Google Scholar 

  77. MacBride, E.W., The development of Asterina gibbosa, Quart. J. Microsc. Sci., 1896, no. 38, pp. 339–411.

  78. MacBride, E.W., The development of Echinus esculentus, Philos. Trans. R. Soc., 1903, no. 195, pp. 285–327.

  79. MacBride, E.W., The development of Ophiothrix fragilis, Quart. J. Microsc. Sci., 1907, no. 51, pp. 557–606.

  80. Malakhov, V.V., The problem of the basic body plant in various groups of deuterostomes, Zh. Obshch. Biol., 1977, vol. 38, no. 4, pp. 485–499.

    Google Scholar 

  81. Malakhov V.V. The problem of the origin of echinoderms in the light of data on their embryonic development, in Problemy izucheniya iskopaemykh i sovremennykh iglokozhikh (Problems of the Study of Fossil and Modern Echinoderms), Tallinn: Akad. Nauk Est. SSR, Inst. Geol., 1989, pp. 14–23.

  82. Malakhov V.V. New ideas on the origin of bilateral animals, Russ. J. Mar. Biol., 2004, vol. 30, supp. 1, pp. 22–33.

    Google Scholar 

  83. Malakhov, V.V., Revolution in zoology: a new system of Bilateria, Priroda, 2009, no. 3, pp. 40–54.

  84. Malakhov, V.V., A new system of Bilateria, Vestn. Ross. Akad. Nauk, 2010, vol. 80, no. 1, pp. 27–44.

    Google Scholar 

  85. Malakhov, V.V., Revolution in zoology: new ideas about the system and phylogeny of multicellular animals, Vestn. Ross. Akad. Nauk, 2013, vol. 83, no. 3, pp. 210–215.

    Google Scholar 

  86. Malakhov, V.V. and Cherkasova, I.V., Metamorphosis of the sea cucumber Stichopus japonicus (Aspidochirota, Stichopodidae), Zool. Zh., 1992, vol. 71, no. 9, pp. 11–21.

    Google Scholar 

  87. Mazet, F. and Shimeld, S.M., The evolution of chordate neural segmentation, Dev. Biol., 2002, vol. 251, pp. 258–270.

    Google Scholar 

  88. Minelli, A., Introduction: the evolution of segmentation, Arthropod Struct. Dev., 2017, vol. 46, no. 3, pp. 323–327.

    Google Scholar 

  89. Mooi, R. and David, B., Radial symmetry, the anterior/posterior axis, and echinoderm Hox genes, Ann. Rev. Ecol. Evol. Syst., 2008, vol. 39, pp. 43–62.

    Google Scholar 

  90. Mortensen, T., Studies in the development of crinoids, in Papers from the Department of Marine Biology, Washington: Carnegie Institution of Washington, 1920, no. 16, pp. 1–94.

  91. Muller, W.A., Goethe als vergleichender Morphologe: Der Zwischenkiefer des Menschen und die Wirbeltheorie des Schadels, in R-Evolution—des Biologischen Weltbildes bei Goethe, Kant und ihren Zeitgenossen, Berlin: Springer-Verlag, 2015, pp. 53–67.

    Google Scholar 

  92. Narasimhamurti, N., The development of Ophiocoma nigra, Quart. J. Microsc. Sci., 1933, no. 76, pp. 63–88.

  93. Nosenko, T., Schreiber, F., Adamska, M., Adamski, M., Eitel, M., Hammel, J., et al., Deep metazoan phylogeny: when different genes tell different stories, Mol. Phylogenet. Evol., 2013, vol. 67, no. 1, pp. 223–233.

    Google Scholar 

  94. Oken, L., Uber die Bedeutung der Schadelknochen: ein Programm beim Antritt der Professur, Jena: J.C.G. Gotfried, 1807.

    Google Scholar 

  95. Olsen, H., The development of the brittle-star Ophiopholis aculeata with a short report on the outer hyaline layer, Bergens Mus. Arb., 1942, no. 6, pp. 1–107.

  96. Olssona, L., Ericsson, R., and Cerny, R., Vertebrate head development: segmentation, novelties, and homology, Theory Biosci., 2005, vol. 124, pp. 145–163.

    Google Scholar 

  97. Onai, T., The evolutionary origin of chordate segmentation: revisiting the enterocoel theory, Theory Biosci., 2018, vol. 137, no. 1, pp. 1–16.

    Google Scholar 

  98. Onai, T., Aramaki, T., Inomata, H., Hirai, T., and Kuratani, S., On the origin of vertebrate somites, Zool. Lett., 2015, vol. 1, p. 33. https://doi.org/10.1186/s40851-015-0033-0

    Article  Google Scholar 

  99. Onai, T., Adachi, N., and Kuratani, S., Metamerism in cephalochordates and the problem of the vertebrate head, Int. J. Dev. Biol., 2017, vol. 61, pp. 621–632.

    Google Scholar 

  100. Osterud, H.L., Preliminary observations on the development of Leptasterias hexactis, Publ. Puget Sound Biol., 1918, no. 2, pp. 1–15.

  101. Peel, A. and Akam, M., Evolution of segmentation: rolling back the clock, Curr. Biol., 2003, no. 13, pp. R708–R710.

  102. Peterson, K.J. and Eernisse, D.J., Animal phylogeny and the ancestry of Bilaterians: inferences from morphology and 18s rDNA gene sequences, Evol. Dev., 2001, vol. 3, no. 3, pp. 170–205.

    Google Scholar 

  103. Philippe, H., Lartillot, N., and Brinkmann, H., Multigene analyses of Bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa and Protostomia, Mol. Biol. Evol., 2005, vol. 22, no. 5, pp. 1246–1253.

    Google Scholar 

  104. De Robertis, E.M., The ancestry of segmentation, Nature, 1997, no. 387, pp. 25–26.

  105. De Robertis, E.M., The molecular ancestry of segmentation mechanisms, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, no. 43, pp. 16411–16412.

    Google Scholar 

  106. De Rosa, R., Grenier, J.K., Andreeva, T., Cook, C.E., Adoutte, A., Akam, M., Carroll, S.B., and Balavoine, G., Hox genes in brachiopods and priapulids and protostome evolution, Nature, 1999, vol. 399, pp. 772–776.

    Google Scholar 

  107. Rozhnov, S.V., Historical development of echinoderm symmetry: from primary bilateral-asymmetric metamerism to pentamerism, in Morfogenez v individual’nom i istoricheskom razvitii: simmetriya i asimmetriya (Morphogenesis in Individual and Historical Development: Symmetry and Asymmetry), Ser. Geo-Biol. Sist. Proshlom, Moscow: Paleontol. Inst., Ross. Akad. Nauk, 2013, pp. 181–203.

  108. Rozhnov, S.V., Morphogenesis and evolution of crinoids and other pelmatozoan echinoderms in the Early Paleozoic, Paleont. J., 2002, vol. 36, no. 6, pp. 525–674.

    Google Scholar 

  109. Rozhnov, S.V., Symmetry of echinoderms: from initial bilaterally-asymmetric metamerism to pentaradiality, Nat. Sci., 2014, vol. 6, no. 4, pp. 171–183.

    Google Scholar 

  110. Runnström, S., Über die Entwicklung von Leptosynapta inhaerens (O.Fr. Müller), Bergens Mus. Arb, 1927, no. 1, pp. 1–80.

  111. Ruppert, E.E., Barnes, R.D., and Fox, R.S., Echinodermata, in Invertebrate Zoology, Belmont: Thomson Brooks/Cole, 2004, vol. 28, pp. 872–929.

    Google Scholar 

  112. Sedgwick, A., On the nature of metameric segmentation and some other morphological questions, Quart. J. Microsc. Sci., 1884, no. 24, pp. 43–82.

  113. Seeliger, O., Studien zur Entwicklungsgeschichte der Crinoiden (Antedon rosacea), Zool. J. Abt. Anat. Ontog., 1892, vol. 6, pp. 161–444.

    Google Scholar 

  114. Selenka, E., Beitrage zur anatomie und systematik der holothurien, Z. Wiss. Zool., 1867, vol. 17, pp. 291–374.

    Google Scholar 

  115. Smith, A.B., Classification of the Echinodermata, Palaeontology, 1984, vol. 27, no. 3, pp. 431–459.

    Google Scholar 

  116. Smith, S.A., Wilson, N.G., Goetz, F.E., Feehery, C., Andrade, S.C.S., Rouse, G.W., Giribet, G., and Dunn, C.W., Resolving the evolutionary relationships of molluscs with phylogenomic tools, Nature, 2011, vol. 480, pp. 364–367.

    Google Scholar 

  117. Snodgrass, R.E., Evolution of the Annelida, Onychophora and Arthropoda, Smithson. Misc. Collect., 1938, no. 97, pp. 1–159.

  118. Sprinkle, J., Morphology and evolution of blastozoan echinoderms, Harv. Univ., Mus. Comp. Zool., Spec. Publ., 1973, pp. 1–283.

  119. Stokes, M.D. and Holland, N.D., Embryos and larvae of a lancelet, Branchiostoma floridae, from hatching through metamorphosis: growth in the laboratory and external morphology, Acta Zool., 1995, vol. 76, no. 2, pp. 105–120.

    Google Scholar 

  120. Tautz, D., Segmentation, Dev. Cell, 2004, no. 7, pp. 301–312.

  121. Telford, M.J., Budd, G.E., and Philippe, H., Phylogenomic insights into animal evolution, Curr. Biol., 2015, vol. 25, pp. R876–R887.

    Google Scholar 

  122. Thompson, W., On the embryology of Antedon rosaceus, Philos. Trans. R. Soc. London, 1865, no. 155, pp. 513–544.

  123. Ubaghs, G., General characters of Echinodermata, in Treatise on Invertebrate Paleontology, Part S: Echinodermata 1, Lawrence: Univ. of Kansas Press, 1967, pp. 3–60.

  124. Ubisch, L., Die Entwicklung von Strongylocentrotus lividus (Echinus microtuberculatus, Arbacia pustulosa), Z. Wiss. Zool., 1913, vol. 106, pp. 409–448.

    Google Scholar 

  125. Wanninger, A., Twenty years into the “new animal phylogeny:” changes and challenges, Org. Diversity Evol., 2016, vol. 16, pp. 315–318.

    Google Scholar 

  126. Wanninger, A., Kristof, A., and Brinkmann, N., Sipunculans and segmentation, Commun. Integr. Biol., 2009, vol. 2, pp. 56–59.

    Google Scholar 

  127. Willey, A., The later larval development of Amphioxus, Quart. J. Microsc. Sci., 1891, vol. 32, no. 126, pp. 183–230.

    Google Scholar 

  128. Yastrebov, S.A., Vertebrate head metamerism: the current state of an old problem, Biol. Bull. (Moscow), 2018, vol. 97, no. 8, pp. 904–915.

    Google Scholar 

  129. Ziegler, A., Faber, C., and Bartolomaeus, T., Comparative morphology of the axial complex and interdependence of internal organ systems in sea urchins (Echinodermata: Echinoidea), Front. Zool., 2009, vol. 6, no. 10, pp. 1–31.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Alexander Semenov (Pertsov Biological Station, Moscow State University) for providing photographs of echinoderms.

Funding

The preparation of the manuscript and illustrations was supported by the Russian Science Foundation (RSF, project no. 18-74-10025). Analysis of the branchial apparatus of Deuterostomia and participation of V.V. Malakhov was supported by the Russian Foundation for Basic Research, project no. 20-04-00909-a). The study was performed within the framework of the state assignment of Moscow State University (project no. 121032300121-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Ezhova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezhova, O.V., Malakhov, V.V. Coelom Metamerism in Echinodermata. Paleontol. J. 55, 1073–1083 (2021). https://doi.org/10.1134/S0031030121100038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030121100038

Keywords:

Navigation