Log in

At the dawn of the aerobic biosphere: The effect of oxygen on the development of biota in the Proterozoic and Early Paleozoic

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

The distinctive features of biota at successive stages of its development in the Proterozoic and Early Paleozoic are analyzed. Based on this analysis the minimum possible and most probable oxygen contents of the atmosphere at each of these stages are determined. It is shown that Proterozoic organisms with the higher level of organization than the background ones first appeared in oxygen oases and that later, when the same mean oxygen content was achieved across the entire water area because of an increase in atmospheric oxygen, these organisms spread widely with an explosive increase in morphological and taxonomic diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astafieva M. M., Rozanov A. Yu., Hoover R. B., Multicellular algae from Lower Proterozoic (2.45 Ga) weathering crusts of Kola Peninsula, Proc. SPIE, 2011, vol. 8152, 815204-1–815204-10. doi:10.1117/12.892453

    Google Scholar 

  • Berkner, L.V. and Marshall, L.C., History of major atmospheric components, Proc. Natl. Acad. Sci. U.S.A., 1965, no. 53, pp. 1215–1225.

    Google Scholar 

  • Blank, C.E., and Sánches-Baracaldo, P., Timing of morphological and ecological innovations in the Cyanobacteria-a key to understanding the rise in atmospheric oxygen, Geobiology, 2010, vol. 8, no. 1, pp. 1–23.

    Google Scholar 

  • Broushkin, A.V. and Gordenko, N.V., The earliest vascular plants and their effect on the environment, in Rannyaya kolonizatsiya sushi (Early colonization of the land), Rozhnov, S.V., Ed., Ser. Geo-biologicheskie protsessy v proshlom (Geobiological processes in the past), Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2012, pp. 157–176.

    Google Scholar 

  • Butterfield, N.J., Ecology and evolution of Cambrian plankton, in The ecology of the Cambrian radiation, Zhuravlev, A.Yu. and Riding, R., Eds., New York: Columbia Univ. Press, 2001, pp. 200–216.

    Google Scholar 

  • Des Marais, D. J., Strauss, H., Summons, R.E., and Hayes, J.M., Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment, Nature, 1992, vol. 359, no. 6396, pp. 605–609.

    Article  Google Scholar 

  • Deutsch, C., Brix, H., Ito, N., Frenzel, H., and Thompson, L., Climat-forced variability of ocean hypoxia, Science, 2011, vol. 333, no. 6040, pp. 336–339.

    Article  Google Scholar 

  • Díaz, R.J. and Rosenberg, R., Spreading dead zones and consequences for marine ecosystems, Science, 2008, vol. 321, no. 5891, pp. 926–929.

    Article  Google Scholar 

  • Droser, M.L., Jensen, S., and Gehling, J.G., Trace fossils and substrates of the terminal Proterozoic-Cambrian transition: Implications for the record of early bilaterians and sediment mixing. Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 20, pp. 12572–12576.

    Article  Google Scholar 

  • Edwards, D., Early land plants, Palaeobiology II, Briggs, D.E.G. and Growther, P.R., Eds., Malden, MA, USA: Blackwell, 2001, pp. 63–66.

    Chapter  Google Scholar 

  • Erwin, D.H., Laflamme, M., Tweedt, S., Sperling, E., Pisani, D., and Peterson, K.J., The Cambrian Conundrum: early divergence and later ecological success in the early history of animals, Science, 2011, vol. 334, no. 6059, pp. 1091–1097.

    Article  Google Scholar 

  • Fedonkin, M.A., Belomorskaya biota venda (The Vendian biota of the White Sea), Moscow: Nauka, 1981.

    Google Scholar 

  • Fedonkin, M.A., Cold dawn of animal life, Priroda, 2000, no. 9, pp. 3–11.

    Google Scholar 

  • Fedonkin, M.A. and Yochelson, E.L., Middle Proterozoic (1.5 Ga) Horodyskia monilformis Yochelson and Fedonkin, the oldest known tissue grade colonial eukaryote, Smithsonian Contribution to Paleobiology, no. 94, Washington, D.C.: Smithsonian Inst. Press, 2002.

    Google Scholar 

  • Flannery, D.T. and Walter, M.R., Archean tufted microbial mats and the Great Oxidation Event: new insights into an ancient problem, Aust. J. Earth Sci., 2012, vol. 59, no. 1, pp. 1–11

    Article  Google Scholar 

  • Gerasimenko, L.M. and Ushatinskaya, G.T., Cyanobacteria, cyanobacterial communities, mats, and biofilms, in Bakterial’naya paleontologiya (Bacterial paleontology), Rozanov, A.Yu., Ed., Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2002, pp. 36–46.

    Google Scholar 

  • Goldblatt, C., Lenton, T.M., and Watson, A.J., Bistability of atmospheric oxygen and the Great Oxidation, Nature, 2006, vol. 443, pp. 683–686.

    Article  Google Scholar 

  • Holland, H.D., Early Proterozoic atmospheric change, in Early life on earth, Bengtson, S., Ed., New York: Columbia Univ. Press, 1994, pp. 237–244.

    Google Scholar 

  • Holland, H.D., The oxygenation of the atmosphere and oceans, Philos. Trans. R. Soc.: Biol. Sci., 2006, vol. 361, pp. 903–915.

    Article  Google Scholar 

  • Ivanenkov, V.N., The budget of oxygen and major nutrient elements, in Khimiya okeana (Chemistry of the Ocean), vol. 1: Khimiya vod okeana (Chemistry of ocean water), Monin, A.S., Bordovsky, O.K., and Ivanenkov, V.N., Eds., Ser. Okeanologiya (Oceanology), Moscow: Nauka, 1979, pp. 417–424.

    Google Scholar 

  • Ivanenkov V.N. and Bordovsky, O.K., Variation in the distribution of oxygen and nutrient elements, in Khimiya okeana (Chemistry of the Ocean), vol. 1: Khimiya vod okeana (Chemistry of ocean water), Monin, A.S., Bordovsky, O.K., and Ivanenkov, V.N., Eds., Ser. Okeanologiya (Oceanology), Moscow: Nauka, 1979, pp. 404–413.

    Google Scholar 

  • Ivanenkov, V.N. and Chernyakova A.M., Solubility, saturation, and partial pressure, in Khimiya okeana (Chemistry of the Ocean), vol. 1: Khimiya vod okeana (Chemistry of ocean water), Monin, A.S., Bordovsky, O.K., and Ivanenkov, V.N., Eds., Ser. Okeanologiya (Oceanology), Moscow: Nauka, 1979a, pp. 133–134.

    Google Scholar 

  • Ivanenkov, V.N. and Chernyakova, A.M., Oxygen extremes, in Khimiya okeana (Chemistry of the Ocean), vol. 1: Khimiya vod okeana (Chemistry of ocean water), Monin, A.S., Bordovsky, O.K., and Ivanenkov, V.N., Eds., Ser. Okeanologiya (Oceanology), Moscow: Nauka, 1979b, pp. 154–160.

    Google Scholar 

  • Ivanenkov, V.N., Vinogradov, V.N., and Chernyakova, A.M., Main patterns of oxygen distribution in the ocean, Khimiya okeana (Chemistry of the Ocean), vol. 1: Khimiya vod okeana (Chemistry of ocean water), Monin, A.S., Bordovsky, O.K., and Ivanenkov, V.N., Eds., Ser. Okeanologiya (Oceanology), Moscow: Nauka, 1979, pp. 136–154.

    Google Scholar 

  • Klein, C. and Beukes, N.J., Proterozoic iron-formations, in Archean crustal evolution, Condie, K.C., Ed., Amsterdam: Elsevier, 1994, pp. 383–418.

    Google Scholar 

  • Kump L.R., Fallick A.E., Melezhik V.A., Strauss H., Lepland A. The Great Oxidation Event, Reading the Archive of Earth’s Oxygenation, Melezhik, V.A., Kump, L.R., Fallick, A.E., Strauss, H., Hanski, E.J., Prave, A.R., and Lepland, A., Eds., vol. 3: Global Events and the Fennoscandian Arctic Russia-Drilling Early Earth Project, Heldelberg, New-York, Dordrecht, London: Springer-Verlag, 2013, pp. 1517–1533.

    Chapter  Google Scholar 

  • Melezhik, V.A., Fallick, A.E., Martin, A.P., Condon, D.J., Kump, L.R., Brasier, A.T., and Salminen, P.E., The Palaeoproterozoic perturbation of the global carbon cycle: the Lomagundi-Jatuli isotopic event, Reading the Archive of Earth’s Oxygenation, Melezhik, V.A., Kump, L.R., Fallick, A.E., Strauss, H., Hanski, E.J., Prave, A.R., and Lepland, A., Eds., vol. 3: Global Events and the Fennoscandian Arctic Russia-Drilling Early Earth Project, Heldelberg, New-York, Dordrecht, London: Springer-Verlag, 2013, pp. 1111–1150.

    Chapter  Google Scholar 

  • Moczydłowska, M., Landing, E., Zang, W., and Palacios, T., Proterozoic phytoplankton and timing of chlorophyte algae origins, Palaeontology, 2011, vol. 54, no. 4, pp. 721–733.

    Article  Google Scholar 

  • Noffke, N., Geobiology: Microbial mats in sandy deposits from the Archean Era to today, Berlin-Heidelberg: Springer-Verlag, 2010.

    Google Scholar 

  • Pavlov, A.A. and Kasting, J.F., Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere, Astrobiology, 2002, vol. 2, no. 1, pp. 27–41.

    Article  Google Scholar 

  • Petsch, S.T., The global oxygen cycle, Biogeochemistry, Schlesinger, W.H., Ed., vol. 8: Treatise on Geochemistry, Holland, H.D. and Turekian, K.K., Eds., Oxford: Elsevier-Pergamon, 2003.

    Google Scholar 

  • Ponomarenko, A.G., Main events in the evolution of the ancient biosphere, in Problemy doantropogennoi evolyutsii biosfery (Problems of pre-anthropogenic evolution of biosphere), Moscow: Nauka, 1993, pp. 15–25.

    Google Scholar 

  • Qu, Q.-M., Zhu, M., and Zhao, W.-J., Silurian atmospheric O2 changes and the early radiation of gnathostomes, Palaeoworld, 2010, vol. 19, nos. 1–2, pp. 146–159.

    Article  Google Scholar 

  • Reuschel, M., Strauss, H., and Lepland, A., The end of mass-independent fractionation of sulphur isotopes, Reading the Archive of Earth’s Oxygenation, Melezhik, V.A., Kump, L.R., Fallick, A.E., Strauss, H., Hanski, E.J., Prave, A.R., and Lepland, A., Eds., vol. 3: Global Events and the Fennoscandian Arctic Russia-Drilling Early Earth Project, Heldelberg, New-York, Dordrecht, London: Springer-Verlag, 2013, pp. 1049–1058.

    Chapter  Google Scholar 

  • Rosen, O.M. and Shchipansky, A.A., Geodynamics of the Early Precambrian, Part 2: Formation of continental crust and sedimentary basins, specificity of the lithosphere, Stratigr. Geol. Correlation, 2007, vol. 15, no. 6, pp. 553–576.

    Article  Google Scholar 

  • Rozanov, A.Yu. and Astafieva, M.M., Prasinophyceae (green algae) from the Lower Proterozoic of the Kola Peninsula, Paleontol. J., 2008, vol. 42, no. 4, pp. 425–430.

    Article  Google Scholar 

  • Rozanov, A.Yu. and Astafieva, M.M., Prasinophyceae (green algae) from the Lower Proterozoic of the Kola Peninsula, Paleontol. J., 2008, vol. 42, no. 4, pp. 425–430.

    Article  Google Scholar 

  • Rozhnov, S.V., Origin of Echinoderms in the Palaeozoic Evolutionary Fauna: Ecological Aspects Acta Palaeontol. Sin., 2007, vol. 46, pp. 416–421.

    Google Scholar 

  • Rozhnov, S.V., Development of the trophic structure of Vendian and Early Paleozoic marine communities, Paleontol. J., 2009, vol. 43, no. 11, pp. 1364–1377.

    Article  Google Scholar 

  • Rozhnov, S.V., From Vendian to Cambrian: the beginning of morphological disparity of modern Metazoan phyla, Ontogenez, 2010, vol. 41, no. 6, pp. 425–437.

    Google Scholar 

  • Seilacher, A. and Pflüger, F., From biomats to benthic agriculture: A biohistoric revolution, Biostabilization of Sediments, Krumbein, W.E., Peterson, D.M., and Stal, L.J., Eds., Oldenburg: Bibliotheks und Informationssystem der Carl von Ossietzky Univ., 1994, pp. 97–105.

    Google Scholar 

  • Semikhatov M.A. and Raaben, M.E., Dynamics of the global diversity of Proterozoic stromatolites. Article 2: Africa, Australia, North America, and general synthesis, Stratigr. Geol. Correlation, 1996, vol. 4, no. 1, pp. 24–50.

    Google Scholar 

  • Semikhatov, M.A., Raaben M.E., Sergeev, V.N., Veis, A.F., and Artemova, O.V., Biotic events and positive Ccarb anomaly at 2.3–2.06 Ga, Stratigr. Geol. Correlation, 1999, vol. 7, no. 5, pp. 413–436.

    Google Scholar 

  • Semikhatov, M.A., Revised estimates of the radiometric ages for the lower boundaries of the Upper Riphean, Vendian, Upper Vendian, and Cambrian: Supplement 4, in Dopolneniya k stratigraficheskomu kodeksu Rossii (Supplements to the Stratigraphic Code of the Russian Federation), Zhamoida, A.I., Ed., St. Petersburg: VSEGEI, 2000, pp. 95–107.

    Google Scholar 

  • Sergeev, V.N., Semikhatov, M.A., Fedonkin, M.A., and Vorob’eva, N.G., Principal stages in evolution of Precambrian organic world: Communication 2. The Late Proterozoic, Stratigr. Geol. Correlation, 2010, vol. 18, no. 6, pp. 561–592.

    Article  Google Scholar 

  • Servais, T., Lehnert, O., Li, J., Mullins, G.L., Munnecke, A., Nützel, A., and Vecoli, M., The Ordovician Biodiversification: revolution in the oceanic trophic chain, Lethaia, 2008, vol. 41, no. 2, pp. 99–109.

    Article  Google Scholar 

  • Shestakov, S.V., Evolutionary genomics of cyanobacteria, in Trudy Mezhdunarodnoi konferentsii “Novye informatsionnye tekhnologii v meditsine, biologii and ekologii,” Ukraine, Gurzuf (Proc. Int. Conf. “New informational technologies in medicine, biology, and ecology,” Ukraine, Gurzuf, 2012), Gurzuf, 2012.

    Google Scholar 

  • The ecology of the Cambrian radiation, Zhuravlev, A.Yu. and Riding, R., Eds., New York: Columbia Univ. Press, 2001.

    Google Scholar 

  • Tomitani, A., Knoll, A.H., Cavanaugh, C.M., and Ohno, T., The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 14, pp. 5442–5447.

    Article  Google Scholar 

  • Vaquer-Sunyer, R. and Duarte, C.M., Thresholds of hypoxia for marine biodiversity, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 40, pp. 15452–15457.

    Article  Google Scholar 

  • Vaquer-Sanyer, R. and Duarte, C.M., Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms, Global Change Biol., 2011, no. 17, pp. 1788–1797.

    Google Scholar 

  • Webby, B.D., Paris, F., Droser, M.L., and Percival, I.G., Eds., The Great Ordovician Biodiversification Event, New York: Columbia Univ. Press, 2004.

    Google Scholar 

  • Westall, F., de Ronde, C.E.J., Southam, G., Grassineau, N., Colas, M., Cockell, C.S., and Lammer, H., Implications of a 3.472–3.333-Gyr-old subaerial microbial mat from the Barbeton greenstone belt, South Africa for the UV environmental conditions on the early Earth, Philos. Trans. R. Soc., Ser. B., 2006, no. 361, pp. 1857–1875.

    Google Scholar 

  • Zavarzin, G.A., Formation of the system of biogeochemical cycles, Paleontol. J., 2003, vol. 37, no. 6, pp. 576–583.

    Google Scholar 

  • Zavarzin, G.A., Evolyutsiya prokariotnoi biosfery: “Mikroby v krugovorote zhizni” 120 let spustya: Chtenie im. S.N. Vinogradskogo (Evolution of the prokaryotic biosphere: “Microbes in the cycle of life” 120 years afterwards: S.N. Winogradsky memorial lectures), Kolotilova, N.N., Ed., Moscow: MAKS Press, 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rozhnov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozhnov, S.V. At the dawn of the aerobic biosphere: The effect of oxygen on the development of biota in the Proterozoic and Early Paleozoic. Paleontol. J. 47, 961–972 (2013). https://doi.org/10.1134/S0031030113090165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030113090165

Keywords

Navigation