Log in

Characteristics of Upconversion Luminescence of CaF2:Er Powders Excited by 1.5-µm Laser Radiation

  • SPECTROSCOPY OF CONDENSED MATTER
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The characteristics of upconversion luminescence of CaF2:Er crystalline powders upon laser excitation of Er3+ ions to the 4I13/2 level at a wavelength of 1531.8 nm are studied. The upconversion luminescence energy yields for the spectral regions of 380–780 and 380–1100 nm are determined. It is found that upconversion luminescence of CaF2:Er powders with Er3+ concentrations of 0.5, 2, 4, 6, 8, 10, 11, 13, 15, and 17% is characterized by correlated color temperatures of 5100, 2142, 1726, 1738, 1773, 1757, 1762, 1765, 1735, and 1714 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. F. Auzel, Chem. Rev. 104, 139 (2004). https://doi.org/10.1021/cr020357g

    Article  Google Scholar 

  2. F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranzdela Fuente, F. Sanz-Rodríguez, L. Martinez-Maestro, E. Martín-Rodriguez, D. Jaque, J. García-Solé, and J. A. Capobianco, ACS Nano 4, 3254 (2010). https://doi.org/10.1021/nn100244a

    Article  Google Scholar 

  3. N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. Enrique Ramírez-Hernández, L. Martínez Maestro, M. Carmen Iglesias-dela Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. García Sole, M. Bettinelli, D. Jaque, and A. Speghini, ACS Nano 5, 8665 (2011). https://doi.org/10.1021/nn202490m

    Article  Google Scholar 

  4. G. Wang, Q. Peng, and Y. Li, J. Am. Chem. Soc. 131, 14200 (2009). https://doi.org/10.1021/ja906732y

    Article  Google Scholar 

  5. X. Qiao, X. Fan, J. Wang, and M. Wang, J. Non-Cryst. Solids 351, 357 (2005). https://doi.org/10.1016/j.jnoncrysol.2004.11.021

    Article  ADS  Google Scholar 

  6. J. A. Capobianco, F. Vetrone, and J. Christopher Boyer, J. Phys. Chem. B 106, 1181 (2002). https://doi.org/10.1021/jp0129582

    Article  Google Scholar 

  7. S. A. Pollack, D. B. Chang, and N. L. Moise, J. Appl. Phys. 60, 4077 (1986). https://doi.org/10.1063/1.337486

    Article  ADS  Google Scholar 

  8. J. C. Goldschmidt and S. Fischer, Adv. Opt. Mater. 3, 510 (2015). https://doi.org/10.1002/adom.201500024

    Article  Google Scholar 

  9. A. A. Lyapin, P. A. Ryabochkina, A. N. Chabushkin, S. N. Ushakov, and P. P. Fedorov, J. Lumin. 167, 120 (2015). https://doi.org/10.1016/j.jlumin.2015.06.011

    Article  Google Scholar 

  10. P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, V. V. Voronov, A. A. Lyapin, P. A. Ryabochkina, M. V. Chernov, M. N. Mayakova, D. V. Pominova, O. V. Uvarov, A. E. Baranchikov, V. K. Ivanov, A. A. Pynenkov, and K. N. Nishchev, J. Fluorine Chem. 202, 9 (2017). https://doi.org/10.1016/j.jfluchem.2017.08.012

    Article  Google Scholar 

  11. A. A. Lyapin, S. V. Kuznetsov, P. A. Ryabochkina, A. P. Merculov, M. V. Chernov, Yu. A. Ermakova, A. A. Luginina, and P. P. Fedorov, Laser Phys. Lett. 14, 076003 (2017). https://doi.org/10.1088/1612-202X/aa7418

    Article  ADS  Google Scholar 

  12. Yu. A. Rozhnova, A. A. Luginina, V. V. Voronov, R. P. Ermakov, S. V. Kuznetsov, A. V. Ryabova, D. V. Pominova, V. V. Arbenina, V. V. Osiko, and P. P. Fedorov, Mater. Chem. Phys. 148, 201 (2014). https://doi.org/10.1016/j.matchemphys.2014.07.032

    Article  Google Scholar 

  13. S. V. Kuznetsov, Yu. A. Ermakova, V. V. Voronov, P. P. Fedorov, D. Busko, I. A. Howard, B. S. Richards, and A. Turshatov, J. Mater. Chem. C 6, 598 (2018). https://doi.org/10.1039/C7TC04913G

    Article  Google Scholar 

  14. M. Misiak, M. Skowicki, T. Lipiński, A. Kowalczyk, K. Prorok, S. Arabasz, and A. Bednarkiewicz, Nano Res. 10, 3333 (2017). https://doi.org/10.1007/s12274-017-1546-y

    Article  Google Scholar 

  15. S. Ivanova, F. Pellé, A. Tkachuk, M.-F. Joubert, Y. Guyot, and V. P. Gapontzev, J. Lumin. 128, 914 (2008). https://doi.org/10.1016/j.jlumin.2007.11.031

    Article  Google Scholar 

  16. S. A. Pollack, D. B. Chang, I-Fu. Shih, and R. Tzeng, Appl. Opt. 26, 4400 (1987). https://doi.org/10.1364/AO.26.004400

    Article  ADS  Google Scholar 

  17. J. P. Jouart and G. Mary, J. Lumin. 46, 39 (1990). https://doi.org/10.1016/0022-2313(90)90080-U

    Article  Google Scholar 

  18. C. M. Verber, J. Appl. Phys. 44, 3263 (1973). https://doi.org/10.1063/1.1662744

    Article  ADS  Google Scholar 

  19. A. A. Lyapin, S. V. Gushchin, S. V. Kuznetsov, P. A. Ryabochkina, A. S. Ermakov, V. Yu. Proydakova, V. V. Voronov, P. P. Fedorov, S. A. Artemov, A. D. Yapryntsev, and V. K. Ivanov, Opt. Mater. Express 8, 1863 (2018). https://doi.org/10.1364/OME.8.001863

    Article  ADS  Google Scholar 

  20. A. A. Lyapin, S. V. Gushchin, A. S. Ermakov, S. V. Kuznetsov, P. A. Ryabochkina, V. Yu. Proydakova, V. V. Voronov, P. P. Fedorov, and M. V. Chernov, Chin. Opt. Lett. 16, 091901 (2018). https://doi.org/10.3788/COL201816.091901

    Article  ADS  Google Scholar 

  21. A. A. Lyapin, P. A. Ryabochkina, S. V. Gushchin, S. V. Kuznetsov, M. V. Chernov, V. Yu. Proydakova, V. V. Voronov, and P. P. Fedorov, Opt. Spectrosc. 125, 537 (2018). https://doi.org/10.1134/S0030400X18100132

    Article  ADS  Google Scholar 

  22. M. R. Brown, H. Thomas, J. S. S. Whiting, and W. A. Shand, J. Chem. Phys. 50, 881 (1969). https://doi.org/10.1063/1.1671139

    Article  ADS  Google Scholar 

  23. D. N. Patel, R. B. Reddy, and S. K. Nash-Stevenson, Appl. Opt. 37, 7805 (1998). https://doi.org/10.1364/AO.37.007805

    Article  ADS  Google Scholar 

  24. G. A. Kumar, C. W. Chen, and R. E. Riman, Appl. Phys. Lett. 90, 093123 (2007). https://doi.org/10.1063/1.2392284

    Article  ADS  Google Scholar 

  25. I. Richman, J. Chem. Phys. 41, 2836 (1964). https://doi.org/10.1063/1.1726360

    Article  ADS  Google Scholar 

  26. M. B. Seelbinder and J. C. Wright, Phys. Rev. B 20, 4308 (1979). https://doi.org/10.1103/PhysRevB.20.4308

    Article  ADS  Google Scholar 

  27. P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, and V. V. Osiko, J. Fluorine Chem. 132, 1012 (2011). https://doi.org/10.1016/j.jfluchem.2011.06.025

    Article  Google Scholar 

  28. S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Yu. Zaharov, M. Yu. Ougrumov, and G. S. Shakurov, Phys. Rev. B 72, 014127 (2005). https://doi.org/10.1103/PhysRevB.72.014127

    Article  ADS  Google Scholar 

  29. O. Greis and J. M. Haschke, Handbook Phys. Chem. Rare Earths 5, 387 (1982). https://doi.org/10.1016/S0168-1273(82)05008-9

    Article  Google Scholar 

  30. W. Ma, X. Qian, J. Wang, J. Liu, X. Fan, J. Liu, L. Su, and J. Xu, Sci. Rep. 6, 36635 (2016). https://doi.org/10.1038/srep36635

    Article  ADS  Google Scholar 

  31. W. D. Wright, Trans. Opt. Soc. 30, 141 (1929). https://doi.org/10.1088/1475-4878/30/4/301

    Article  Google Scholar 

  32. J. Guild, Phil. Trans. R. Soc. A 230 (681–693), 149 (1931). https://doi.org/10.1098/rsta.1932.0005

  33. A. V. Ryabova, D. V. Pominova, A. V. Krut’ko, M. G. Komova, and V. B. Loschenov, Photon. Lasers Med. 2, 117 (2013). https://doi.org/10.1515/plm-2013-0013

    Article  Google Scholar 

  34. A. Kobayashi, Absolute Measurements of Photoluminescence Quantum Yields of Organic Compounds Using an Integrating Sphere (Gunma Univ., 2010).

    Google Scholar 

  35. R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  36. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, I-ntroduction to Ceramics (Wiley, New York, 1976).

    Google Scholar 

  37. G. Zhi, J. Song, B. Mei, and W. Zhou, J. Alloys Compd. 509, 9133 (2011). https://doi.org/10.1016/j.jallcom.2011.06.084

    Article  Google Scholar 

  38. P. P. Fedorov and B. P. Sobolev, Sov. Phys. Crystallogr. 37, 651 (1992).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 17-72-10163. Transmission electron microscopy investigations were performed by A.V. Atanova using the equipment of the Center for Collective Use of the Federal Scientific Research Center Crystallography and Photonics, Russian Academy of Sciences, and supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of a state order to this center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lyapin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Basieva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyapin, A.A., Ryabochkina, P.A., Gushchin, S.V. et al. Characteristics of Upconversion Luminescence of CaF2:Er Powders Excited by 1.5-µm Laser Radiation. Opt. Spectrosc. 128, 200–206 (2020). https://doi.org/10.1134/S0030400X20020137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20020137

Keywords:

Navigation