Log in

The study of ungerade electronic states of the Xe2 molecules in the region of Xe*(5p 56p, 5d, 7s, 6d) by the resonance multiphoton ionization method

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Electronic spectra of the Xe2 molecules in the energy range of 77700–89300 cm−1 are recorded. The method of resonance enhanced multiphoton ionization of molecules in a supersonic molecular beam was used, in which excitation of the molecules by three photons was followed by ionization caused by a fourth photon (the (3+1) REMPI method). Analysis of the vibrational structure of observed systems of bands yielded information about the dissociation energy and the molecular constants for ungerade states of molecules. On the basis of the Franck-Condon principle, the equilibrium distances for potential curves were estimated from the relative intensities in vibrational progressions. Data on 16 new electronic states of diatomic xenon molecules with the dissociation limits Xe *2 → XE(5p 6 1 S 0) + Xe*(5p 56p,5d, 7s, 7p) were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Wilkinson and T. Tanaka, J. Opt. Soc. Am. 45, 344 (1955).

    Article  ADS  Google Scholar 

  2. D. E. Freeman, K. Yoshino, and Y. Tanaka, J. Chem. Phys. 61, 4880 (1974).

    Article  ADS  Google Scholar 

  3. M. C. Castex, Chem. Phys. 5, 448 (1974).

    Article  ADS  Google Scholar 

  4. M. C. Castex, J. Chem. Phys. 74(2), 759 (1981).

    Article  ADS  Google Scholar 

  5. R. H. Lipson, P. E. LaRocque, and B. P. Stoicheff, J. Chem. Phys. 82(10), 4470 (1985).

    Article  ADS  Google Scholar 

  6. K. Tsukiyama, M. Tsukakoshi, and T. Kasuya, Chem. Phys. 127, 393 (1988).

    Article  Google Scholar 

  7. K. Tsukiyama and T. Kasuya, J. Mol. Spectrosc. 151, 312 (1992).

    Article  ADS  Google Scholar 

  8. C. D. Pibel, K. Yamanouchi, and S. Tsuchiya, J. Chem. Phys. 100(9), 6153 (1994).

    Article  ADS  Google Scholar 

  9. D. M. Mao, X. K. Hu, Y. J. Shi, J. Ma, and R. H. Lipson, Can. J. Phys. 78, 433 (2000).

    Article  ADS  Google Scholar 

  10. D. M. Mao, X. K. Hu, S. S. Dimov, and R. H. Lipson, J. Mol. Spectrosc. 181, 435 (1997).

    Article  ADS  Google Scholar 

  11. D. M. Mao, X. K. Hu, Y. J. Shi, and R. H. Lipson, Chem. Phys. 257, 253 (2000).

    Article  Google Scholar 

  12. D. S. Green and S. C. Wallace, J. Chem. Phys. 100(9), 6129 (1994).

    Article  ADS  Google Scholar 

  13. X. K. Hu, D. M. Mao, S. S. Dimov, and R. H. Lipson, J. Chem. Phys. 106(23), 9419 (1997).

    Article  ADS  Google Scholar 

  14. X. K. Hu, D. M. Mao, Y. J. Shi, S. S. Dimov, and R. H. Lipson, J. Chem. Phys. 109(10), 3944 (1998).

    Article  ADS  Google Scholar 

  15. S. M. Koeckhoven, W. J. Buma, and C. A. De Lange, J. Chem. Phys. 102(10), 4020 (1995).

    Article  ADS  Google Scholar 

  16. P. M. Dehmer, S. T. Pratt, and J. L. Dehmer, J. Chem. Phys. 85(1), 13 (1986).

    Article  ADS  Google Scholar 

  17. J. W. Keto, Hong Cai, C. Lei, T. Moller, and G. Zimmerer, J. Chem. Phys. 107(16), 6080 (1997).

    Article  ADS  Google Scholar 

  18. V. A. Shubert, M. Rednic, and S. T. Pratt, J. Chem. Phys. 132, 124108 (2010).

    Article  ADS  Google Scholar 

  19. P. M. Dehmer and J. L. Dehmer, J. Chem. Phys. 68(8), 3462 (1978).

    Article  ADS  Google Scholar 

  20. Y. Lu, Y. Morioka, T. Tanaka, H. Yoshii, et al., J. Chem. Phys. 102(4), 1554 (1995).

    Article  ADS  Google Scholar 

  21. R. S. Mulliken, J. Chem. Phys. 52(10), 5170 (1970).

    Article  ADS  Google Scholar 

  22. C. Jonin and F. Spiegelmann, J. Chem. Phys. 117(7), 3059 (2002).

    Article  ADS  Google Scholar 

  23. C. Jonin, P. Laporte, and F. Spiegelmann, J. Chem. Phys. 117(7), 3049 (2002).

    Article  ADS  Google Scholar 

  24. K. T. Tang and J. P. Toennies, J. Chem. Phys. 118(11), 4976 (2003).

    Article  ADS  Google Scholar 

  25. R. H. Lipson and R. W. Field, J. Chem. Phys. 110(22), 10653 (1999).

    Article  ADS  Google Scholar 

  26. M. A. Khodorkovskii, A. A. Belyaeva, L. P. Rakcheeva, T. O. Artamonova, P. Yu. Serdobintsev, A. A. Pastor, A. S. Kozlov, S. V. Murashov, A. Z. Devdariani, and K. Siegbahn, Opt. Spectrosc. 100(4), 497 (2006).

    Article  ADS  Google Scholar 

  27. M. A. Khodorkovskii, A. A. Belyaeva, L. P. Rakcheeva, A. A. Pastor, P. Yu. Serdobintsev, N. A. Timofeev, I. A. Shevkunov, R. Hallin, and K. Siegbahn, Opt. Spectrosc. 102(6), 834 (2007).

    Article  ADS  Google Scholar 

  28. M. A. Khodorkovskii, A. A. Belyaeva, L. P. Rakcheeva, P. Yu. Serdobintsev, A. A. Pastor, A. S. Mel’nikov, N. A. Timofeev, R. Hallin, and K. Siegbahn, Opt. Spectrosc. 104(5), 674 (2008).

    Article  ADS  Google Scholar 

  29. M. A. Khodorkovskii, S. V. Murashov, T. O. Artamonova, A. A. Belyaeva, L. P. Rakcheeva, P. Yu. Serdobintsev, A. A. Pastor, N. A. Timofeev, I. A. Shevkunov, I. A. Dement’ev, R. Hallin, and J. Nordgren, Opt. Spectrosc. 108(6), 899 (2010).

    Article  ADS  Google Scholar 

  30. M. A. Khodorkovskii, S. V. Murashov, T. O. Artamonova, A. A. Belyaeva, L. P. Rakcheeva, A. A. Pastor, P. Yu. Serdobintsev, N. A. Timofeev, I. A. Shevkunov, I. A. Dement’ev, and J. Nordgren, J. Phys. 43, 155101 (2010).

    ADS  Google Scholar 

  31. M. A. Khodorkovskii, S. V. Murashov, T. O. Artamonova, A. A. Belyaeva, L. P. Rakcheeva, A. A. Pastor, P. Yu. Serdobintsev, N. A. Timofeev, I. A. Shevkunov, I. A. Dement’ev, and J. Nordgren, J. Phys. 43, 235101 (2010).

    MathSciNet  ADS  Google Scholar 

  32. G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 1: Spectra of Diatomic Molecules (Van Nostrand, New York, 1950).

    Google Scholar 

  33. H. S. Carman and R. N. Compton, J. Chem. Phys. 90(3), 1307 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.A. Khodorkovskii, A.A. Belyaeva, L.P. Rakcheeva, P.Yu. Serdobintsev, A.S. Melnikov, I.A. Shevkunov, N.A. Timofeev, A.A. Pastor, 2012, published in Optika i Spektroskopiya, 2012, Vol. 112, No. 5, pp. 738–755.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khodorkovskii, M.A., Belyaeva, A.A., Rakcheeva, L.P. et al. The study of ungerade electronic states of the Xe2 molecules in the region of Xe*(5p 56p, 5d, 7s, 6d) by the resonance multiphoton ionization method. Opt. Spectrosc. 112, 679–695 (2012). https://doi.org/10.1134/S0030400X1204011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X1204011X

Keywords

Navigation