Log in

Synthesis of a Bisbenzoxazole Analogue of Hoechst 33258 as a Potential GC-Selective DNA Ligand

  • STRUCTURAL–FUNCTIONAL ANALYSIS OF BIOPOLYMERS AND THEIR COMPLEXES
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Using a computer modeling approach, we proposed a structure for a potential GC-specific DNA ligand, which could form a complex with DNA in the minor groove similar to that formed by Hoechst 33258 at DNA AT-enriched sites. According to this model, MBoz2A, a bisbenzoxazole ligand, was synthesized. The results of spectrophotometric methods supported the complex formation of the compound under study with DNA differing in the nucleotide composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Geierstanger B.H., Wemmer D.E. 1995. Complexes of the minor groove of DNA. Annu. Rev. Biophys. Biomol. Struct. 24, 463‒493.

    Article  CAS  PubMed  Google Scholar 

  2. Krey A.K., Hahn F.E. 1970. Studies on the complex of distamycin A with calf thymus DNA. FEBS Lett. 10, 175‒178.

    Article  CAS  PubMed  Google Scholar 

  3. Harshman K.D., Dervan P.B. 1985. Molecular recognition of B-DNA by Hoechst 33258. Nucl. Acids Res. 13, 4825‒48354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dervan P.B. 2001. Molecular recognition of DNA by small molecules. Bioorg. Med. Chem. 9, 2215‒2235.

    Article  CAS  PubMed  Google Scholar 

  5. Dervan P.B., Buerli R.W. 1999. Sequence-specific DNA recognition by polyamides. Curr. Opin. Chem. B-iol. 3, 688‒693.

    Article  CAS  Google Scholar 

  6. Wemmer D.E., Dervan P.B. 1997. Targeting the minor groove of DNA. Curr. Opin. Struct. Biol. 7, 355‒361.

    Article  CAS  PubMed  Google Scholar 

  7. Dervan P.B., Doss R.M., Marques M.A. 2005. Programmable DNA binding oligomers for control of transcription. Curr. Med. Chem.—Anti-Cancer Agents. 5, 373‒387.

    Article  CAS  Google Scholar 

  8. Guo P., Paul A., Kumar A., Farahat A.A., Kumar D., Wang S., Boykin D.W., Wilson D.W. 2016. The thiophene “sigma-hole” as a concept for preorganized, specific recognition of G.C base pairs in the DNA minor groove. Chem. Eur. J. 22, 15404–15412.

    Article  CAS  PubMed  Google Scholar 

  9. Guo P., Farahat A.A., Paul A., Hanka N.K., Boykin D.V., Wilson W.D. 2018. Compound shape effects in minor groove binding affinity and specificity for mixed sequence DNA. J. Am. Chem. Soc. 140, 14761‒14769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilson W.D., Paul A. 2022. Compound shape and substituent effects in DNA minor groove interactions. In Handbook of Chemical Biology of Nucleic Acids. Sugimoto N., Ed. Springer Nature Singapore Pte Ltd., p. 1‒39.

    Google Scholar 

  11. Paul A., Nanjunda R., Wilson W.D. 2023. Binding to the DNA minor groove by heterocyclic dications from AT specific to GC recognition compounds. Curr. Protocols. 3 (4), e729.

    Article  CAS  Google Scholar 

  12. O’Boyle N.M., Banck M., Craig A.J., Morley C., Vandermeersch T., Hutchison G.R. 2011. Open Babel: An open chemical toolbox. J. Cheminf. 3, 1‒14.

    Google Scholar 

  13. Korb O., Stützle T., Exner T.E. 2007. An ant colony optimization approach to flexible protein–ligand docking. Swarm Intelligence. 1, 115134.

    Article  Google Scholar 

  14. Teng M.K., Usman N., Frederick C.A., Wang A.H. 1988. The molecular structure of the complex of Hoechst 33258 and the DNA dodecamer d (CGCGAATTCGCG. Nucleic Acids Res. 16, 2671‒2690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Finlay A.C., Hochstein F.A., Sobin B.A., Murphy F.X. 1951. Netropsin, a new antibiotic produced by a Streptomyces. J. Am. Chem. Soc. 73, 341‒344.

    Article  CAS  Google Scholar 

  16. Zasedatelev A.S., Borodulin V.B., Grokhovsky S.L., Nikitin A.M., Salmanova D.V., Zhuze A.L., Gursky G.V., Shafer R.H. 1995. Mono-, di- and trimeric binding of a bis-netropsin to DNA. FEBS Lett. 375, 304‒306.

    Article  CAS  PubMed  Google Scholar 

  17. Makarska-Bialokoz M. 2014. Fluorescence quenching effect of guanine interacting with water-soluble cationic porphyrin. J. Lumin. 47, 27‒33.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 23-24-00082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Zhuze.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Modifications have been made to the author’s name and Fig. 1. Full information regarding the corrections made can be found in the erratum/correction for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arutyunyan, A.F., Aksenova, M.S., Kostyukov, A.A. et al. Synthesis of a Bisbenzoxazole Analogue of Hoechst 33258 as a Potential GC-Selective DNA Ligand. Mol Biol 58, 547–556 (2024). https://doi.org/10.1134/S0026893324700171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893324700171

Keywords:

Navigation