Log in

Inactivation of Terminal Oxidase bd-I Leads to Supersensitivity of E. coli to Quinolone and Beta-Lactam Antibiotics

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

In cells of Escherichia coli, terminal oxidase bd-I encoded by the cydAB gene catalyzes the reduction of O2 to water using hydroquinone as an electron donor. In addition to the cydAB operon, two other genes, cydC and cydD, encoding the heterodimeric ATP-binding cassette-type transporter are essential for the assembly of cytochrome bd-I. It was shown that inactivation of cytochrome bd-I by the introduction of cydB or cydD deletions into the E. coli chromosome leads to supersensitivity of the bacteria to antibiotics of the quinolone and beta-lactam classes. The sensitivity of these mutants to antibiotics is partially suppressed by introduction of a constitutively expressed gene katG under the control of the Ptet promoter into their genome. The increased level of hydrogen sulfide resulting from the introduction of the mstA gene, encoding 3-mercaptopyruvate sulfurtransferase, under the control of the Ptet promoter, leads to the same effect. These data demonstrate the important role of cytochrome bd-I in the defense of bacteria from oxidative stress and bactericidal antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Anraku Y., Gennis R.B. 1987. The aerobic respiratory chain of Escherichia coli. Trends Biochem. Sci. 12, 262–266.

    Article  CAS  Google Scholar 

  2. Kranz R.G., Gennis R.B. 1983. Immunological characterization of the cytochrome o terminal oxidase from Escherichia coli. J. Biol. Chem. 258, 10614‒10621.

    Article  CAS  PubMed  Google Scholar 

  3. Rice C.W., Hempfling W.P. 1978. Oxygen-limited continuous culture and respiratory energy conservation in Escherichia coli. J. Bacteriol. 134, 115–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Georgiou C.D., Fang H., Gennis R.B. 1987. Identification of the cydC locus required for the expression of the functional form of the cytochrome d terminal oxidase complex in Escherichia coli. J. Bacteriol. 169, 2107–2112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Poole R.K., Hatch L., Cleeter M.W.J., Gibson F., Cox G.B., Wu G. 1993. Cytochrome bd biosynthesis in Escherichia coli: The sequences of the cydC and cydD genes suggest that they encode the components of an ABC membrane transporter. Mol. Microbiol. 10, 421–430.

    Article  CAS  PubMed  Google Scholar 

  6. Borisov V.B., Forte E., Konstantinov A.A., Poole R.K., Sarti P., Giuffre A. 2004. Interaction of the bacterial terminal oxidase cytochrome bd with nitric oxide. FEBS Lett. 576, 201–204.

    Article  CAS  PubMed  Google Scholar 

  7. Mason M.G., Shepherd M., Nicholls P., Dobbin P.S., Dodsworth K.S., Poole R.K., Cooper C.E. 2009. Cytochrome bd confers nitric oxide resistance to Escherichia coli. Nat. Chem. Biol. 5, 94–96.

    Article  CAS  PubMed  Google Scholar 

  8. Lindqvist A., Membrillo-Hernandez J., Poole R.K., Cook G.M. 2000. Roles of respiratory oxidases in protecting Escherichia coli K12 from oxidative stress. Antonie Van Leuwenhoek. 78, 23–31.

    Article  CAS  Google Scholar 

  9. Giuffre A., Borisov V.B., Arese M., Sarti P., Forte E. 2014. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim. Biophys. Acta. 1837, 1178–1187.

    Article  CAS  PubMed  Google Scholar 

  10. Borisov V.B., Davletshin A.I., Konstantinov A.A. 2010. Peroxidase activity of cytochrome bd from Escherichia coli. Biochemistry (Moscow). 75, 428–436.

    Article  CAS  Google Scholar 

  11. Korshunov S., Imlay J.A. 2010. Two sources of endogenous hydrogen peroxide in Escherichia coli. Mol. Microbiol. 75, 1389–1401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rice C.W., Hempfling W.P. 1978. Oxygen-limited continuous culture and respiratory energy conservation in Escherichia coli. J. Bacteriol. 134, 115–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cotter P.A., Chepuri V., Gennis R.B., Gunsalus R.P. 1990. Cytochrome o (cyoABCDE) and d (cydAB) oxidase gene expression in Escherichia coli is regulated by oxygen, pH, and the fnr gene product. J. Bacteriol. 172, 6333–6338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fu H.-A., Iuchi S., Lin E.C.C. 1991. The requirement of ArcA and Fnr for peak expression of the cyd operon in Escherichia coli under microaerobic conditions. Mol. Gen. Genet. 226, 209–213.

    Article  CAS  PubMed  Google Scholar 

  15. Avetisyan A.V., Bogachev A.V., Murtasina R.A., Skulachev V.P. 1992. Involvement of a d-type oxidase in the Na+-motive respiratory chain of Escherichia coli growing under low ΔμH+ conditions. FEBS Lett. 306, 199–202.

    Article  CAS  PubMed  Google Scholar 

  16. Delaney J.M., Fayet O., Lipinska B., Yamamoto T., Georgopoulos C. 1992. arc-Dependent thermal regulation and extragenic suppression of the Escherichia coli cytochrome d operon. J. Bacteriol. 174, 6554–6562.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Delaney J.M., Wall D., Georgopoulos C. 1993. Molecular characterization of the Escherichia coli htrD gene: cloning, sequence, regulation, and involvement with cytochrome d oxidase. J. Bacteriol. 175, 166–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ashcroft J.R., Haddock B.A. 1975. Synthesis of alternative membrane-bound redox carriers during aerobic growth of Escherichia coli in the presence of potassium cyanide. Biochem. J. 148, 349–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brekasis D., Paget M.S. 2003. A novel sensor of NADH/NAD+ redox poise in Streptomyces coelicolor A3(2). EMBO J. 222, 4856–4865.

    Article  Google Scholar 

  20. Bogachev A.V., Murtazina R.A., Skulachev V.P. 1993. Cytochrome d induction in Escherichia coli growing under unfavorable conditions. FEBS Lett. 336, 75–78.

    Article  CAS  PubMed  Google Scholar 

  21. Bogachev A.V., Murtazine R.A., Shestopalov A.I., Skulachev V.P. 1995. Induction of the Escherichia coli cytochrome d by low ΔμH+ and by sodium ions. Eur. J. Biochem. 232, 304–308.

    Article  CAS  PubMed  Google Scholar 

  22. Tamegai H., Kato C., Horikoshi K. 1998. Pressure-regulated respiratory system in barotolerant bacterium, Shewanella sp. strain DSS12. J. Biochem. Mol. Biol. Biophys. 1, 213–220.

    CAS  Google Scholar 

  23. Tamegai H., Kawano H., Ishii A., Chikuma S., Nakasone K., Kato C. 2005. Pressure-regulated biosynthesis of cytochrome bd in piezo- and psychrophilic deep-sea bacterium Shewanella violacea DSS12. Extremophiles. 9, 247–253.

    Article  CAS  PubMed  Google Scholar 

  24. Poole R.K., Williams H.D., Downie J.A., Gibson F. 1989. Mutations affecting the cytochrome d-containing oxidase complex of Escherichia coli K12: identification and map** of a fourth locus, cydD. J. Gen. Microbiol. 135, 865–1874.

    Google Scholar 

  25. Macinga D.R., Rather P.N. 1996. aarD, a Providencia stuartii homologue of cydD: role in 2′-N-acetyltransferase expression, cell morphology and growth in the presence of an extracellular factor. Mol. Microbiol. 19, 511–520.

    Article  CAS  PubMed  Google Scholar 

  26. Cook G.M., Loder C., Soballe B., Stafford G.P., Membrillo-Hernandez J., Poole R.K. 1998. A factor produced by Escherichia coli K-12 inhibits the growth of E. coli mutants defective in the cytochrome bd quinol oxidase complex: enterochelin rediscovered. Microbio-logy. 144, 3297–3308.

    CAS  Google Scholar 

  27. Siegele D.A., Kolter R. 1993. Isolation and characterization of an Escherichia coli mutant defective in resuming growth after starvation. Genes Dev. 7, 629–640.

    Article  Google Scholar 

  28. Siegele D.A., Imlay K.R., Imlay J.A. 1996. The stationary-phase-exit defect of cydC (surB) mutants is due to the lack of a functional terminal cytochrome oxidase. J. Bacteriol. 178, 6091–6096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shatalin K, Shatalina E., Mironov A., Nudler E. 2011. H2S: A universal defense against antibiotics in bacteria. Science. 334, 986–990.

    Article  CAS  PubMed  Google Scholar 

  30. Mironov A., Seregina T., Shatalin K., Nagornykh M., Shakulov R., Nudler E. 2020. CydDC functions as a cytoplasmic cystine reductase to sensitize Escherichia coli to oxidative stress and aminoglycosides. Proc. Natl. Acad. Sci. U. S. A. 117, 23565‒23570.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mironov A., Seregina T., Nagornykh M., Luhachack L., Korolkova L., Errais Lopes L., Kotova V., Zavilgelsky G., Shakulov R., Shatalin R., Nudler E. 2017. A mechanism of H2S-mediated protection against oxidative stress in E. coli. Proc. Natl. Acad. Sci. U. S. A. 114, 6022‒6027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K.A., Tomita M., Wanner B.L., Mori H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008.

  33. Datsenko K.A., Wanner B.L. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U. S. A. 97, 6640–6645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kotova V.Yu., Mironov A.S., Zavilgelsky G.B. 2014. Role of reactive oxygen species in the bactericidal action of quinolones as inhibitors of DNA gyrase. Mol. Biol. (Moscow). 48 (6), 870–877.

    Article  CAS  Google Scholar 

  35. Kotova V.Yu., Manukhov I.V., Zavilgelsky G.B. 2009. Lux biosensors for detecting SOS response, heat shock and oxidative stress. Biotechnologiya. 6, 16‒25.

    Google Scholar 

  36. Miller J.H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor: Cold Spring Harbor Lab. Press.

    Google Scholar 

  37. Zavilgelsky G.B., Kotova V.Y., Manukhov I.V. 2007. Action of 1,1-dimethylhydrazine on bacterial cells is determined by hydrogen peroxide. Mutat. Res. 634, 172–176.

    Article  CAS  PubMed  Google Scholar 

  38. Kita K., Konishi K., Anraku Y. 1984) Terminal oxidases of Escherichia coli aerobic respiratory chain. II. Purification and properties of cytochrome b558-d complex from cells grown with limited oxygen and evidence of branched electron-carrying systems. J. Biol. Chem. 259, 3375‒3381.

    Article  CAS  PubMed  Google Scholar 

  39. Cruz-Ramos H., Cook G.M., Wu G., Cleeter M.W., Poole R.K. 2004. Membrane topology and mutational analysis of Escherichia coli CydDC, an ABC-type cysteine exporter required for cytochrome assembly. Microbiology. 150, 3415‒3427.

    Article  CAS  PubMed  Google Scholar 

  40. Luan G., Hong Y., Drlica K., Zhao X. 2018. Suppression of reactive oxygen species accumulation accounts for paradoxical bacterial survival at high quinolone concentration. Antimicrob. Agents Chemother. 62, e01622-17.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Malik M., Zhoo X., Drlica K. 2006. Lethal fragmentation of bacterial chromosomes mediated by DNA gyrase and quinolones. Mol. Microbiol. 61, 810–825.

    Article  CAS  PubMed  Google Scholar 

  42. Dwyer D.J., Kohanski M.A., Hayele B., Collins J.J. 2007. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol. Syst. Biol. 3, 91–106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kohanski M.A., Dwyer D.J., Hayele B., Lawrence C.A., Collins J.J. 2007. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 130, 797–810.

    Article  CAS  PubMed  Google Scholar 

  44. Wang X., Zhao X., Malik M., Drlica K. 2010. Contribution of reactive oxygen species to pathways of quinolone-mediated bacterial cell death. J. Antimicrob. Chemother. 65, 520–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dwyer D.J., Kohanski M.A., Collins J.J. 2009. Role of reactive oxygen species in antibiotic action and resistance. Curr. Opin. Microbiol. 12, 482–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang X., Zhao X. 2009. Contribution of oxidative damage to antimicrobial lethality. Antimicrob. Agents Chemother. 53, 1395–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kohanski M.A., Dwyer D.J., Collins J.J. 2010. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 8, 423–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Belenky P., Collins J.J. 2011. Antioxidant strategies to tolerate antibiotics. Science. 334, 915–916.

    Article  CAS  PubMed  Google Scholar 

  49. Foti J.J., Devadoss B., Winkler J.A., Collins J.J., Walker G.C. 2012. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science. 336, 315–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Imlay J.A., Chin S.M., Linn S. 1988. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science. 240, 640–642.

    Article  CAS  PubMed  Google Scholar 

  51. Park S., You X., Imlay J.A. 2005. Substantial DNA damage from submicromolar intracellular hydrogen peroxide detected in Hpx7 mutants of Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 102, 9317–9322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao X., Drlica K. 2014. Reactive oxygen species and the bacterial response to lethal stress. Curr. Opin. Microbiol. 21, 1–6.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to E.A. Nudler for valuable comments during the discussion of the results of this work.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (Electronic budget system contract no. 075-10-2021-113, project ID: RF-193021X0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Seregina.

Ethics declarations

The authors declare no conflicts of interest. This article does not contain any research involving humans or animals as research objects.

Additional information

Translated by N. Onishchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seregina, T.A., Lobanov, K.V., Shakulov, R.S. et al. Inactivation of Terminal Oxidase bd-I Leads to Supersensitivity of E. coli to Quinolone and Beta-Lactam Antibiotics. Mol Biol 56, 572–579 (2022). https://doi.org/10.1134/S0026893322040100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893322040100

Keywords:

Navigation