Log in

Synonymous Codon Usage—a Guide for Co-Translational Protein Folding in the Cell

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—In the cell, protein folding begins during protein synthesis/translation and thus is a co-translational process. Co-translational protein folding is tightly linked to translation elongation, which is not a uniform process. While there are many reasons for translation non-uniformity, it is generally believed that non-uniform synonymous codon usage is one of the key factors modulating translation elongation rates. Frequent/optimal codons as a rule are translated more rapidly than infrequently used ones and vice versa. Over 30 years ago, it was hypothesized that changes in synonymous codon usage affecting translation elongation rates could im**e on co-translation protein folding and that many synonymous codons are strategically placed within mRNA to ensure a particular translation kinetics facilitating productive step-by-step co-translational folding of proteins. It was suggested that this particular translation kinetics (and, specifically, translation pause sites) may define the window of opportunity for the protein parts to fold locally, particularly at the critical points where folding is far from equilibrium. It was thus hypothesized that synonymous codons may provide a secondary code for protein folding in the cell. Although, mostly accepted now, this hypothesis appeared to be difficult to prove and many convincing results were obtained only relatively recently. Here, I review the progress in the field and explain, why this simple idea appeared to be so challenging to prove.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Hartl F.U. 2017. Protein misfolding diseases. Annu. Rev. Biochem.86, 21‒26.

    Article  CAS  PubMed  Google Scholar 

  2. Chiti F., Dobson C.M. 2017. Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade. Annu. Rev. Biochem.86, 27‒68.

    Article  CAS  PubMed  Google Scholar 

  3. Soto C., Pritzkow S. 2018. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci.21, 1332‒1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fersht A.R. 2008. From the first protein structures to our current knowledge of protein folding: Delights and skepticisms. Nat. Rev. Mol. Cell Biol.9, 650‒654.

    Article  CAS  PubMed  Google Scholar 

  5. Ferina J., Daggett V. 2019. Visualizing protein folding and unfolding. J. Mol. Biol.431, 1540–1564.

    Article  CAS  PubMed  Google Scholar 

  6. Anfinsen C.B. 1973. Principles that govern the folding of protein chains. Science.181, 223‒230.

    Article  CAS  PubMed  Google Scholar 

  7. Finkelstein A.V. 2018. 50+ years of protein folding. Biochemistry (Moscow). 83 (Suppl. 1), S3‒S18.

    CAS  PubMed  Google Scholar 

  8. Bartlett A.I., Radford S.E. 2009. An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms. Nat. Struct. Mol. Biol.16, 582‒588.

    Article  CAS  PubMed  Google Scholar 

  9. Abaskharon R.M., Gai F. 2016. Meandering down the energy landscape of protein folding: Are we there yet? Biophys. J.110, 1924‒1932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jaenicke R. 1991. Protein folding: local structures, domains, subunits, and assemblies. Biochemistry.30, 3147‒3161.

    Article  CAS  PubMed  Google Scholar 

  11. Hartl F.U., Hayer-Hartl M. 2009. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol.16, 574‒581.

    Article  CAS  PubMed  Google Scholar 

  12. Hingorani K.S. Gierasch L.M. 2014. Comparing protein folding in vitro and in vivo: Foldability meets the fitness challenge. Curr. Opin. Struct. Biol.24, 81‒90.

    Article  CAS  PubMed  Google Scholar 

  13. Balchin D., Hayer-Hartl M., Hartl F.U. 2016. In vivo aspects of protein folding and quality control. Science. 353, aac4354.

    Article  PubMed  CAS  Google Scholar 

  14. Gruebele M., Dave K., Sukenik S. 2016. Globular protein folding in vitro and in vivo. Annu. Rev. Biophys.45, 233‒251.

    Article  CAS  PubMed  Google Scholar 

  15. Dahiya V., Buchner J. 2019. Functional principles and regulation of molecular chaperones. Adv. Protein Chem. Struct. Biol.114, 1‒60.

    Article  PubMed  Google Scholar 

  16. Jayaraj G.G., Hipp M.S., Hartl F.U. 2019. Functional modules of the proteostasis network. Cold Spring Harb. Perspect. Biol. Mar. 4, pii: a033951. https://doi.org/10.1101/cshperspect.a033951

  17. Komar A.A. 2009. A pause for thought along the co-translational folding pathway. Trends Biochem. Sci.34, 16‒24.

    Article  CAS  PubMed  Google Scholar 

  18. Kramer G., Boehringer D., Ban N., Bukau B. 2009. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat. Struct. Mol. Biol.16, 589‒597.

    Article  CAS  PubMed  Google Scholar 

  19. Cabrita L.D., Dobson C.M., Christodoulou J. 2010. Protein folding on the ribosome. Curr. Opin. Struct. Biol.20, 33‒45.

    Article  CAS  PubMed  Google Scholar 

  20. Pechmann S., Willmund F., Frydman J. 2013. The ribosome as a hub for protein quality control. Mol. Cell.49, 411‒421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gloge F. Becker A.H. Kramer G., Bukau B. 2014. Co-translational mechanisms of protein maturation. Curr. Opin. Struct. Biol.24, 24‒33.

    Article  CAS  PubMed  Google Scholar 

  22. Chaney J.L., Clark P.L. 2015. Roles for synonymous codon usage in protein biogenesis. Annu. Rev. Biophys.44, 143‒166.

    Article  CAS  PubMed  Google Scholar 

  23. Thommen M., Holtkamp W., Rodnina M.V. 2017. Co-translational protein folding: Progress and methods. Curr. Opin. Struct. Biol.42, 83‒89.

    Article  CAS  PubMed  Google Scholar 

  24. Komar A.A. 2018. Unraveling co-translational protein folding: Concepts and methods. Methods.137, 71‒81.

    Article  CAS  PubMed  Google Scholar 

  25. Williams N.K, Dichtl B. 2018. Co-translational control of protein complex formation: A fundamental pathway of cellular organization? Biochem. Soc. Trans.46, 197‒206.

    Article  CAS  PubMed  Google Scholar 

  26. Cowie D.B., Spiegelman S., Roberts R.B., Duerksen J.D. 1961. Ribosome-bound beta-galactosidase. Proc. Natl. Acad. Sci. U. S. A.47, 114‒122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zipser D., Perrin D. 1963. Complementation on ribosomes. Cold Spring Harbor. Symp. Quant. Biol.28, 533‒537.

    Article  CAS  Google Scholar 

  28. Kiho Y., Rich A. 1964. Induced enzyme formed on bacterial polyribosomes. Proc. Natl. Acad. Sci. U. S. A.51, 111‒118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hamlin J., Zabin I. 1972. β-Galactosidase: Immunological activity of ribosome-bound, growing polypeptide chains. Proc. Natl. Acad. Sci. U. S. A.69, 412‒416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bergman L.W., Kuehl W.M. 1979. Formation of intermolecular disulfide bonds on nascent immunoglobulin polypeptides. J. Biol. Chem.254, 5690‒5694.

    CAS  PubMed  Google Scholar 

  31. Bergman L.W., Kuehl W.M. 1979. Formation of an intrachain disulfide bond on nascent immunoglobulin light chains. J. Biol. Chem.254, 8869‒8876.

    CAS  PubMed  Google Scholar 

  32. Bergman L.W., Kuehl W.M. 1979. Co-translational modification of nascent immunoglobulin heavy and light chains. J. Supramol. Struct.11, 9‒24.

    Article  CAS  PubMed  Google Scholar 

  33. Gilbert R.J., Fucini P., Connell S., Fuller S.D., Nierhaus K.H., Robinson C.V., Dobson C.M., Stuart D.I. 2004. Three-dimensional structures of translating ribosomes by Cryo-EM. Mol. Cell.14, 57‒66.

    Article  CAS  PubMed  Google Scholar 

  34. Kosolapov A., Deutsch C. 2009. Tertiary interactions within the ribosomal exit tunnel. Nat. Struct. Mol. Biol.16, 405‒411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tu L., Khanna P., Deutsch C. 2014. Transmembrane segments form tertiary hairpins in the folding vestibule of the ribosome. J. Mol. Biol.426, 185‒198.

    Article  CAS  PubMed  Google Scholar 

  36. Holtkamp W., Kokic G., Jäger M., Mittelstaet J., Komar A.A., Rodnina M.V. 2015. Cotranslational protein folding on the ribosome monitored in real time. Science. 350, 1104‒1107.

    Article  CAS  PubMed  Google Scholar 

  37. Komar A.A. 2018. The Yin and Yang of codon usage. Hum. Mol. Genet.25 (R2), R77–R85.

    Article  CAS  Google Scholar 

  38. Schuller A.P., Green R. 2018. Roadblocks and resolutions in eukaryotic translation. Nat. Rev. Mol. Cell Biol.19, 526‒541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Purvis I.J., Bettany A.J., Santiago T.C., Coggins J.R., Duncan K., Eason R., Brown A.J. 1987. The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. A hypothesis. J. Mol. Biol.193, 413‒417.

    Article  CAS  PubMed  Google Scholar 

  40. Krasheninnikov I.A., Komar A.A., Adzhubeĭ I.A. 1988. Role of the rare codon clusters in defining the boundaries of polypeptide chain regions with identical secondary structures in the process of co-translational folding of proteins. Dokl. Akad. Nauk SSSR.303, 995‒999.

    CAS  PubMed  Google Scholar 

  41. Krasheninnikov I.A., Komar A.A., Adzhubeĭ I.A. 1989. Frequency of using codons in mRNA and coding of the domain structure of proteins. Dokl. Akad. Nauk SSSR.305, 1006‒1012.

    CAS  PubMed  Google Scholar 

  42. Krasheninnikov I.A., Komar A.A., Adzhubeĭ I.A. 1989. Role of the code redundancy determining cotranslational protein folding. Biokhimiya.5, 187‒200.

    Google Scholar 

  43. Crick F.H., Barnett L., Brenner S., Watts-Tobin R.J. 1961. General nature of the genetic code for proteins. Nature. 192, 1227‒1232.

    Article  CAS  PubMed  Google Scholar 

  44. Hershberg R., Petrov D.A. 2008. Selection on codon bias. Annu. Rev. Genet.42, 287‒299.

    Article  CAS  PubMed  Google Scholar 

  45. Sharp P.M., Emery L.R. Zeng K. 2010. Forces that influence the evolution of codon bias. Philos. Trans. R. Soc. Lond. B.365, 1203‒1212.

    Article  CAS  Google Scholar 

  46. Behura S.K.m Severson D.W. 2013. Codon usage bias: Causative factors, quantification methods and genome-wide patterns, with emphasis on insect genomes. Biol. Rev. Camb. Philos. Soc.88, 49‒61.

    Article  PubMed  Google Scholar 

  47. Ikemura T. 1985. Codon usage and tRNA content in unicellular and multicellular organisms. Mol. Biol. Evol.2, 13‒34.

    CAS  PubMed  Google Scholar 

  48. Sharp P.M., Cowe E., Higgins D.G., Shields D.C., Wolfe K.H., Wright F. 1988. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens: A review of the considerable within-species diversity. Nucleic Acids Res.16, 8207‒8211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Andersson S.G., Kurland C.G. 1990. Codon preferences in free-living microorganisms. Microbiol. Rev.,54, 198‒210.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nakamura Y., Gojobori T., Ikemura T. 2000. Codon usage tabulated from the international DNA sequence databases: Status for the year 2000. Nucleic Acids Res.28, 292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ikemura T. 1981. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J. Mol. Biol.146, 1‒21.

    Article  CAS  PubMed  Google Scholar 

  52. Ikemura T. 1982. Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. J. Mol. Biol.158, 573‒597.

    Article  CAS  PubMed  Google Scholar 

  53. Quax T.E., Claassens N.J., Söll D., van der Oost J. 2015. Codon bias as a means to fine-tune gene expression. Mol. Cell.59, 149‒161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Komar A.A. 2016. The art of gene redesign and recombinant protein production: approaches and perspectives. In: Protein Therapeutics. Eds Zuben E. Sauna, Chava Kimchi-Sarfaty. Springer, pp 161‒177. doi.org/https://doi.org/10.1007/978-3-319-41818-6

    Google Scholar 

  55. Hanson G., Coller J. 2018. Codon optimality, bias and usage in translation and mRNA decay. Nat. Rev. Mol. Cell Biol.19, 20‒30.

    Article  CAS  PubMed  Google Scholar 

  56. Sharp P.M., Tuohy T.M., Mosurski K.R. 1986. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res.14, 5125‒5143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shields D.C., Sharp P.M. 1987. Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res.15, 8023‒8040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sharp P.M., Devine K.M. 1989. Codon usage and gene expression level in Dictyostelium discoideum: Highly expressed genes do “prefer” optimal codons. Nucleic Acids Res.17, 5029‒5039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Karlin S., Mrázek J., Campbell A.M. 1998. Codon usages in different gene classes of the Escherichia coli genome. Mol. Microbiol.29, 1341‒1355.

    Article  CAS  PubMed  Google Scholar 

  60. Brinkmann U., Mattes R.E., Buckel P. 1989. High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene.85, 109‒114.

    Article  CAS  PubMed  Google Scholar 

  61. Chen K.S., Peters T.C., Walker J.R. 1990. A minor arginine tRNA mutant limits translation preferentially of a protein dependent on the cognate codon. J. Bacteriol.172, 2504‒2510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen G.T., Inouye M. 1994. Role of the AGA/AGG codons, the rarest codons in global gene expression in Escherichia coli.Genes Dev.8, 2641‒2652.

    Article  CAS  PubMed  Google Scholar 

  63. Zahn K., Landy A. 1996. Modulation of lambda integrase synthesis by rare arginine tRNA. Mol. Microbiol.21, 69‒76.

    Article  CAS  PubMed  Google Scholar 

  64. Del Tito B.J., Jr., Ward J.M., Hodgson J., Gershater C.J., Edwards H., Wysocki L.A., Watson F.A., Sathe G., Kane J.F. 1995. Effects of a minor isoleucyl tRNA on heterologous protein translation in Escherichia coli.J. Bacteriol.177, 7086‒7091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Protzel A., Morris A.J. 1974. Gel chromatographic analysis of nascent globin chains. Evidence of nonuniform size distribution. J. Biol. Chem.249, 4594‒4600.

    CAS  PubMed  Google Scholar 

  66. Chaney W.G., Morris A.J. 1978. Nonuniform size distribution of nascent peptides: The role of messenger RNA. Arch. Biochem. Biophys.191, 734‒741.

    Article  CAS  PubMed  Google Scholar 

  67. Krasheninnikov I.A. Komar A.A., Adzhubeĭ I.A. 1991. Nonuniform size distribution of nascent globin peptides, evidence for pause localization sites, and a cotranslational protein-folding model. J. Protein Chem.10, 445–454.

    Article  CAS  PubMed  Google Scholar 

  68. Komar A.A., Jaenicke R. 1995. Kinetics of translation of gamma B crystallin and its circularly permutated variant in an in vitro cell-free system: Possible relations to codon distribution and protein folding. FEBS Lett.376, 195‒198.

    Article  CAS  PubMed  Google Scholar 

  69. Wolin S.L., Walter P. 1988. Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J.7, 3559‒3569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hollingsworth M.J., Kim J.K., Stollar N.E. 1998. Heelprinting analysis of in vivo ribosome pause sites. Methods Mol. Biol.77, 153‒165.

    CAS  PubMed  Google Scholar 

  71. Ingolia N.T., Ghaemmaghami S., Newman J.R., Weissman J.S. 2009. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science.324, 218‒223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McGlincy N.J., Ingolia N.T. 2017. Transcriptome-wide measurement of translation by ribosome profiling. Methods.126, 112‒129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Ingolia NT, Hussmann JA, Weissman JS. 2018. Ribosome profiling: Global views of translation. Cold Spring Harb. Perspect. Biol.11 (5), pii: a032698. https://doi.org/10.1101/cshperspect.a032698

    Article  Google Scholar 

  74. Hussmann J.A., Patchett S., Johnson A., Sawyer S., Press W.H. 2015. Understanding biases in ribosome profiling experiments reveals signatures of translation dynamics in yeast. PLoS Genet.11, e1005732.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Mohammad F., Green R., Buskirk A.R. 2019. A systematically-revised ribosome profiling method for bacteria reveals pauses at single-codon resolution. eLife.8, e42591.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kimura M. 1984. The Neutral Theory of Molecular Evolution Cambridge. Cambridge, UK: Cambridge Univ. Press.

    Google Scholar 

  77. Zhao Z., Fu Y.X., Hewett-Emmett D., Boerwinkle E. 2003. Investigating single nucleotide polymorphism (SNP) density in the human genome and its implications for molecular evolution. Gene.312, 207‒213.

    Article  CAS  PubMed  Google Scholar 

  78. Chamary J.V., Parmley J.L., Hurst L.D. 2006. Hearing silence: Non-neutral evolution at synonymous sites in mammals. Nat. Rev. Genet.7, 98‒108.

    Article  CAS  PubMed  Google Scholar 

  79. Yarus M., Folley L.S. 1985. Sense codons are found in specific contexts. J. Mol. Biol.182, 529‒540.

    Article  CAS  PubMed  Google Scholar 

  80. Buckingham R.H. 1990. Codon context. Experientia. 46, 1126‒1133.

    Article  CAS  PubMed  Google Scholar 

  81. Buckingham, R.H. 1994. Codon context and protein synthesis: enhancements of the genetic code. Biochimie. 76, 351‒354.

    Article  CAS  PubMed  Google Scholar 

  82. Gutman G.A., Hatfield G.W. 1989. Nonrandom utilization of codon pairs in Escherichia coli.Proc. Natl. Acad. Sci. U. S. A.86, 3699‒3703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tats A., Tenson T., Remm M. 2008. Preferred and avoided codon pairs in three domains of life. BMC Genomics. 9, 463.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Diambra L.A. 2017. Differential bicodon usage in lowly and highly abundant proteins. PeerJ. 5, e3081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Brule C.E., Grayhack E.J. 2017). Synonymous codons: Choose wisely for expression. Trends Genet.33, 283‒297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Alexaki A., Kames J.M., Holcomb D.D., Athey J., Santana-Quintero L.V., Lam P.V., Hamasaki-Katagiri N., Osipova E., Simonyan V., Bar H., Komar A.A., Kimchi-Sarfaty C. 2019. Codon and Codon-Pair Usage Tables (CoCoPUTs): Facilitating genetic variation analyses and recombinant gene design. J. Mol. Biol.431 (13), 2434‒2441. https://doi.org/10.1016/j.jmb.2019.04.021

    Article  CAS  PubMed  Google Scholar 

  87. Képès F. 1996. The “+70 pause”: Hypothesis of a translational control of membrane protein assembly. J. Mol. Biol.262, 77‒86.

    Article  PubMed  Google Scholar 

  88. Clarke T.F., 4th, Clark P.L. 2008. Rare codons cluster. PLoS One.3, e3412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Kudla G., Murray A.W., Tollervey D., Plotkin J.B. 2009. Coding-sequence determinants of gene expression in Escherichia coli.Science.324, 255‒258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Clarke T.F., 4th, Clark P.L. 2010. Increased incidence of rare codon clusters at 5' and 3' gene termini: Implications for function. BMC Genomics.11, 118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Goodman D.B., Church G.M., Kosuri S. 2013. Causes and effects of N-terminal codon bias in bacterial genes. Science.342, 475‒479.

    Article  CAS  PubMed  Google Scholar 

  92. Bentele K., Saffert P., Rauscher R., Ignatova Z., Bluthgen N. 2013. Efficient translation initiation dictates codon usage at gene start. Mol. Syst. Biol.9, 675.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Pechmann S., Chartron J.W., Frydman J. 2014. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo.Nat. Struct. Mol. Biol.21, 1100‒1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Thanaraj T.A., Argos P. 1996. Ribosome-mediated translational pause and protein domain organization. Protein Sci.5, 1594‒1612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Thanaraj T.A., Argos P. 1996. Protein secondary structural types are differentially coded on messenger RNA. Protein Sci.5, 1973‒1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Adzhubei A.A., Adzhubei I.A., Krasheninnikov I.A., Neidle S. 1996. Non-random usage of 'degenerate' codons is related to protein three-dimensional structure. FEBS Lett.399, 78‒82.

    Article  CAS  PubMed  Google Scholar 

  97. Oresic M., Shalloway D. 1998. Specific correlations between relative synonymous codon usage and protein secondary structure. J. Mol. Biol.281, 31‒48.

    Article  CAS  PubMed  Google Scholar 

  98. Chartier M., Gaudreault F., Najmanovich R. 2012. Large-scale analysis of conserved rare codon clusters suggests an involvement in co-translational molecular recognition events. Bioinformatics. 28, 1438‒1445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Widmann M., Clairo M., Dippon J., Pleiss J. 2008. Analysis of the distribution of f unctionally relevant rare codons. BMC Genomics.9, 207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. McKownvR.L., Raab R.W., Kachelries P., Caldwell S., Laurie G.W. 2013. Conserved regional 3' grou** of rare codons in the coding sequence of ocular prosecretory mitogen lacritin. Invest. Ophthalmol. Vis. Sci.54, 1979‒1987.

  101. Gustafsson C., Govindarajan S., Minshull J. 2004. Codon bias and heterologous protein expression. Trends Biotechnol.22, 346–353.

    Article  CAS  PubMed  Google Scholar 

  102. Wu G., Zheng Y., Qureshi I., Zin H.T., Beck T., Bulka B., Freeland S.J. 2007. SGDB: A database of synthetic genes re-designed for optimizing protein over-expression. Nucleic Acids Res.35, D76–D79.

    Article  CAS  PubMed  Google Scholar 

  103. Quax T.E., Claassens N.J., Soll D., van der Oost J. 2015. Codon bias as a means to fine-tune gene expression. Mol. Cell. 59, 149–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Presnyak V., Alhusaini N., Chen Y.H., Martin S., Morris N., Kline N., Olson S., Weinberg, D., Baker K.E., Graveley B.R., Coller J. 2015. Codon optimality is a major determinant of mRNA stability. Cell.160, 1111‒1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Boël G., Letso R., Neely H., Price W.N., Wong K.H., Su M., Luff J.D., Valecha M., Everett J.K., Acton T.B., **ao R., Montelione G.T., Aalberts D.P., Hunt J.F. 2016. Codon influence on protein expression in E. coli correlates with mRNA levels. Nature.529, 358‒363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Mishima Y., Tomari Y. 2016. Codon usage and 3' UTR length determine maternal mRNA stability in zebrafish. Mol. Cell.61, 874‒885.

    Article  CAS  PubMed  Google Scholar 

  107. Sharp P.M., Li W.H. 1987. The Codon Adaptation Index: A measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281‒1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Komar A.A., Lesnik T., Reiss C. 1999. Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation. FEBS Lett.462, 387‒391.

    Article  CAS  PubMed  Google Scholar 

  109. Uemura S., Aitken C.E., Korlach J., Flusberg B.A., Turner S.W., Puglisi J.D. 2010. Real-time tRNA transit on single translating ribosomes at codon resolution. Nature.464, 1012‒1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Prabhakar A., Puglisi E.V., Puglisi J.D. 2019. Single-molecule fluorescence applied to translation. Cold Spring Harb. Perspect. Biol.11, pii: a032714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Buhr F., Jha S., Thommen M., Mittelstaet J., Kutz F., Schwalbe H., Rodnina M.V., Komar A.A. 2016. Synonymous codons direct cotranslational folding toward different protein conformations. Mol. Cell.61, 341‒351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Komar A.A., Kommer A., Krasheninnikov I.A., Spirin A.S. 1993. Cotranslational heme binding to nascent globin chains. FEBS Lett.326, 261‒263.

    Article  CAS  PubMed  Google Scholar 

  113. Komar A.A., Kommer A., Krasheninnikov I.A., Spirin A.S. 1997. Cotranslational folding of globin. J. Biol. Chem.272, 10646‒10651.

    Article  CAS  PubMed  Google Scholar 

  114. Kolb V.A., Makeyev E.V., Spirin A.S. (1994). Folding of firefly luciferase during translation in a cell-free system. EMBO J.13, 3631‒3637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Makeyev E.V., Kolb V.A., Spirin A.S. 1996. Enzymatic activity of the ribosome-bound nascent polypeptide. FEBS Lett.378, 166‒170.

    Article  CAS  PubMed  Google Scholar 

  116. Kimchi-Sarfaty C., Oh J.M., Kim I.W., Sauna Z.E., Calcagno A.M., Ambudkar S.V., Gottesman M.M. 2007. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science.315, 525‒528.

    Article  CAS  PubMed  Google Scholar 

  117. Zhang G., Hubalewska M., Ignatova Z. 2009. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat. Struct. Mol. Biol.16, 274‒280.

    Article  CAS  PubMed  Google Scholar 

  118. Zhou M., Guo J., Cha J., Chae M., Chen S., Barral J.M., Sachs M.S., Liu Y. 2013. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature.495, 111‒115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sander I.M., Chaney J.L., Clark P.L. 2014. Expanding Anfinsen’s principle: Contributions of synonymous codon selection to rational protein design, J. Am. Chem. Soc.136, 858‒861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hu S., Wang M., Cai G., He M. 2013. Genetic code-guided protein synthesis and folding in Escherichia coli.J. Biol. Chem.288, 30855‒30861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kim S.J., Yoon J.S., Shishido H., Yang Z., Rooney L.A., Barral J.M., Skach W.R. 2015. Protein folding. Translational tuning optimizes nascent protein folding in cells. Science.348, 444‒448.

    Article  CAS  PubMed  Google Scholar 

  122. Yu C.H., Dang Y., Zhou Z., Wu C., Zhao F., Sachs M.S., Liu Y. 2015. Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol. Cell.59, 744‒754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Komar A.A. 2007. SNPs, silent but not invisible. Science.315, 466‒467.

    Article  CAS  PubMed  Google Scholar 

  124. Komar A.A. 2007. Silent SNPs: Impact on gene function and phenotype. Pharmacogenomics.8, 1075–1080.

    Article  CAS  PubMed  Google Scholar 

  125. Sauna. Z.E., Kimchi-Sarfaty C. 2011. Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet.12, 683‒691.

    Article  CAS  PubMed  Google Scholar 

  126. Hunt R.C., Simhadri V.L., Iandoli M., Sauna Z.E., Kimchi-Sarfaty C. 2014. Exposing synonymous mutations. Trends Genet.30, 308‒321.

    Article  CAS  PubMed  Google Scholar 

  127. Simhadri V.L., Hamasaki-Katagiri N., Lin B.C., Hunt R., Jha S., Tseng S.C., Wu A., Bentley A.A., Zichel R., Lu Q., Zhu L., Freedberg D.I., Monroe D.M., Sauna Z.E., Peters R., Komar A.A., Kimchi-Sarfaty C. 2017. Single synonymous mutation in factor IX alters protein properties and underlies haemophilia B. J. Med. Genet.54, 338‒345.

    Article  CAS  PubMed  Google Scholar 

  128. Knobe K.E., Sjorin E., Ljung R.C. 2008. Why does the mutation G17736A/Val107Val (silent) in the F9 gene cause mild haemophilia B in five Swedish families? Haemophilia. 14, 723–728.

    Article  CAS  PubMed  Google Scholar 

  129. Shyu Y.J., Liu H., Deng X., Hu C.D. 2006. Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques.40, 61‒66.

    Article  CAS  PubMed  Google Scholar 

  130. Shyu Y.J., Hu C.D. 2008. Fluorescence complementation: An emerging tool for biological research. Trends Biotechnol.26, 622‒630.

    Article  CAS  PubMed  Google Scholar 

  131. Chen B., Kaledhonkar S., Sun M., Shen B., Lu Z., Barnard D., Lu T.M., Gonzalez R.L., Jr., Frank J. 2015. Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryogenic electron microscopy. Structure. 23, 1097‒1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work would not be possible without the original contribution of Ivan A. Adzhubei and Igor A. Krasheninnikov, further support from Slava Kolb, Aigar Kommer, Lev P. Ovchinnikov and Alexander S. Spirin, followed by collaborations with Rainer Jaenicke, Claude Reiss and more recently with Chava Kimchi-Sarfaty, Harald Schwalbe and Marina V. Rodnina.

I am indebted to all my colleagues and collaborators for their extremely generous and inspiring discussions and invaluable contributions.

I also apologize to those whose work or original publications could not be cited in this short review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Komar.

Ethics declarations

FUNDING

In recent years, this work in my laboratory was supported by grants from the Human Frontier Science Program Organization [HFSP grant #RGP0024/2010], the American Heart Association [AHA grant 13GRNT17070025], the National Institutes of Health [NIH grant HL121779], the Center for Gene Regulation in Health and Disease (GRHD) at CSU, and the biotechnology company, DAPCEL, Inc, that for more that 10 years has been successfully utilizing ideas developed during this study for synonymous gene optimization aimed at production (in any desired host organism) of correctly folded, soluble proteins.

COMPLIANCE WITH ETHICAL STANDARDS

The author declares that he has no conflict of interest. This article does not contain any studies involving animals or human participants performed by the author.

ADDITIONAL INFORMATION

The text was submitted by the author(s) in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komar, A.A. Synonymous Codon Usage—a Guide for Co-Translational Protein Folding in the Cell. Mol Biol 53, 777–790 (2019). https://doi.org/10.1134/S0026893319060098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319060098

Keywords:

Navigation