Log in

Apoptosis and neutrophils in the regulation of Ph-positive myeloid cell proliferation and differentiation ex vivo

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Ex vivo proliferation and differentiation of Philadelphia chromosome-positive (Ph+) human myeloid cells (Ph+ cells) from chronic myeloid leukemia (CML) proceed via alternation stages of cell proliferation and neutrophil maturation. To regulate them, apoptosis is alternately blocked or induced with the help of neutrophils and expression of bcr/abl, bax, and bcl2. The regulation of apoptosis in main types of Ph+ cells depends on the alternation of (1) Ph+ cell proliferation and (2) neutrophil maturation and may follow two pathways. One consists in alternating blockages and inductions of apoptosis with initial maturation and subsequent proliferation under alternation stages as (2)-(1)-(2) and has not been described as yet. Neutrophil accumulation blocks apoptosis. As neutrophils are depleted, apoptosis is induced again. Its block accelerates proliferation with a new accumulation of neutrophils, which is followed by regular neutrophil death and a new induction of apoptosis. The way optimizes the proliferation efficiency (P/D index) with a regular alternation of maturation and proliferation, allowing the cycle of proliferation and differentiation to be completed. In another way, the alternation starts with proliferation as (1)-(2)-(1) at a lower neutrophil content) and leads to resistant decrease of the maximal apoptosis level by a factor of 3–8 as compared with (2)-(1)-(2) alternation. A stable block of apoptosis is observed in cells with prolonged stages of proliferation and maturation, leading to an accumulation of blasts and myelocytes with elevated bcr/abl expression and expression of bcl2 > bax. A stable block of apoptosis is associated with CML progression and in Ph+ cell lines. Cells follow the first pathway of the apoptotic regulation in chronic-phase CML. Ex vivo cultivation of Ph+ cells from individual CML patients was assumed to provide for a more exact diagnosis of the CML phase and optimizing the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CPD:

cell proliferation and differentiation

CML:

chronic myeloid leukemia

Ph+ cells:

Philadelphia chromosome-positive cells

P cells:

immature proliferating cells

D cells:

neutrophils, conventionally mature cells

References

  1. Deininger M.W.N., Goldman J.M. 2000. The molecular biology of chronic myeloid leukemia. Blood. 96, 3343–3356.

    PubMed  CAS  Google Scholar 

  2. Melo J.V. 1996. The diversity of the BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood. 88, 2375–2384.

    PubMed  CAS  Google Scholar 

  3. Jiang X., Eisterer W., Chalandon Y., Porada G., Zanjani E., Eaves A. 2003. New models to investigate mechanisms of disease genesis from primitive BCR-ABL(+) hematopoietic cells. Ann. NY Acad. Sci. 996, 1–9.

    Article  PubMed  Google Scholar 

  4. Holyoake T.L., Jiang X., Eaves A.C., Eaves C.J. 2002. Elucidating critical mechanisms of deregulated stem cell turnover in the chronic phase of chronic myeloid leukemia. Leukemia. 16, 549–558.

    Article  PubMed  CAS  Google Scholar 

  5. Jamieson C.H.M., Ailles L.E., Dylla S.J., Muijtjens M., et al. 2004. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast crisis CML. New Eng. J. Med. 354, 657–667

    Article  Google Scholar 

  6. Buckle A.M., Mottram R., Pierce A., et al. 2000. The effect of Bcr-Abl protein tyrosine kinase on maturation and proliferation of primitive haematopoietic cells. Mol. Med. 6, 892–902.

    PubMed  CAS  Google Scholar 

  7. Primo D., Flores J., Quijano S., Sanchez M.L., et al. 2006. Impact of BCR/ABL gene expression on the proliferative rate of different subpopulations of haematopoietic cells in chronic myeloid leukaemia. Br. J. Haematol. 135, 43–51.

    Article  PubMed  Google Scholar 

  8. Coppo P., Dusanter-Fourt I., Millot G., et al. 2003. Constitutive and specific activation of STAT3 by BCR-ABL in embryonic stem cells. Oncogene. 22, 4102–4110.

    Article  PubMed  CAS  Google Scholar 

  9. Traycoff C.V., Haistead B., Rice S., et al. 1998. Chronic myelogenous leukaemia CD34+ cells exit G0/G1 phases of cell cycle more rapidly than normal marrow CD34+ cells. Br. J. Haetmatol. 102, 759–767.

    Article  CAS  Google Scholar 

  10. Abdulkadyrov K.M., Bessemel’tsev S.S., Rukavitsyn O.A. 1998. Khronicheskii mieloleikoz (Chronic Myelogenous Leukaemia). St. Petersburg: Spetsial’naya Literatura.

    Google Scholar 

  11. Vorobyev A.I. 2002. Rukovodstvo po gematologii (A Manual of Hematology). Moscow: Nyudiamed, vol. 1.

    Google Scholar 

  12. Lugovskaya S.A., Pochtar’ M.E., Tupitsin N.N. 2005. Immunotipirovanie v immunodiagnostike gemoblastozov (Immunoty** in Diagnosis of Hemonlastoses). Moscow: Triada.

    Google Scholar 

  13. Cortez D., Kadlec L., Pendergast A.M. 1995. Structural and signaling requeirments for bcr-abl-mediated transformation and inhibition of apoptosis. Mol. Cell Biol. 10, 5531–5541.

    Google Scholar 

  14. Bedi A., Barber J.P., Bedi G.C., El-Deiry W.S., et al. 1995. Bcr-abl-mediated inhibition of apoptosis with delay of G2/M transition after DNA damaged: A mechanism of resistance to multiple anticancer agents. Blood. 86, 1148–1158.

    PubMed  CAS  Google Scholar 

  15. Selleri C., Maciejewski J.P., Pane F., et al. 1998. Fasmediated modulation of bcr/abl in chronic myelogenous leukemia results in differential effects on apoptpsis. Blood. 92, 981–989.

    PubMed  CAS  Google Scholar 

  16. Stoklosa T., Poplawski T., Koptyra M., et al. 2008. Bcr/abl inhibits mismatch repair to protect from apoptosis and induce point mutations. Cancer Res. 68, 2576–2580.

    Article  PubMed  CAS  Google Scholar 

  17. Adams J.M. 2003. Ways of dying: Multiple pathways in apoptosis. Genes Dev. 17, 2481–2495.

    Article  PubMed  CAS  Google Scholar 

  18. Van Delft M.F., Huang D.C.S. 2006. How BCL2 family of proteins interact to regulate apoptosis. Cell Res. 15, 203–213.

    Article  Google Scholar 

  19. Fletcher J. I., Meusburger S., Hawkins C.J., et al. 2008. Apoptosis is triggered when prosurvival Bcl-2 proteins cannot restrain Bax. Proc. Natl. Acad. Sci. U. S. A. 105, 18081–18087.

    Article  PubMed  CAS  Google Scholar 

  20. Amarante-Mendes G.P., Naekyung Kim C., et al. 1998. Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3. Blood. 91, 1700–1705.

    PubMed  CAS  Google Scholar 

  21. Adams J.M. 2003. Ways of dying: Multiple pathways in apoptosis. Genes Dev. 17, 2481–2495.

    Article  PubMed  CAS  Google Scholar 

  22. Green D.R., Kroemer G. 2004. The patophysiology of mitochondrial cell death. Science. 305, 626–629.

    Article  PubMed  CAS  Google Scholar 

  23. Miyashita T., Kraevsky S., Kraevsky M., et al. 1994. Tumor suppressor p53 is a regulator of BCL2 and Bax gene expression in vitro and in vivo. Oncogene. 9, 1799–1805.

    PubMed  CAS  Google Scholar 

  24. Gesbert F., Griffin J.D. 2000. Bcr/abl activates transcription of the Bcl-X gene through Stat5. Blood. 96, 2269–2276.

    PubMed  CAS  Google Scholar 

  25. Danial N.N. 2007. BCL-2 family proteins: Critical checkpoints of apoptotic cell death. Clin. Cancer Res. 13, 7254–7263.

    Article  PubMed  CAS  Google Scholar 

  26. Niwa H., Burdon T., Chambers I., Smith A. 1998. Selfrenewal of pluripotent embryonic stem cells via activation of STAT3. Genes Dev. 12, 2048–2060.

    Article  PubMed  CAS  Google Scholar 

  27. Grineva N.I., Duchovenskaya E.A., Timofeev A.M., et al. 2012. Gene expression upon proliferation and differentiation of hematopoietic cells with Ph chromosome ex vivo. Acta Naturae. 4, 95–114.

    PubMed  CAS  Google Scholar 

  28. Grineva N.I., Akhlynina T.V., Gerasimova L.P., et al. 2009. Cell regulation of proliferation and differentiation ex vivo for cells containing Ph chromosome in chronic myeloid leukemia. Acta Naturae. 1, 198–120.

    Google Scholar 

  29. Grineva N.I., Akhlynina T.V., Gerasimova L.P., et al. 2010. Differences in proliferation and differentiation of Ph+ cells from individual CML patients in suspension culture: 3. Alternation of proliferation and maturation stages in differentiating Ph+ cells. Ross. Bioterapevt. Zh. 9, 61–76.

    Google Scholar 

  30. Grineva N.I., Akhlynina T.V., Gerasimova L.P., et al. 2009. Differences in proliferation and differentiation of Ph+ cells from different CML patients in culture. Three types of Ph+ cells in CML: Proliferation and differentiation of highly efficient Ph+ cells. Ross. Bioterapevt. Zh. 8, 53–68.

    Google Scholar 

  31. Akhlynina T.V., Grineva N.I., Gerasimova L.P., et al. 2010. Differences in proliferation and differentiation of Ph+ cells from individual CML patients in suspension culture: Ph+ cells with a low efficiency of proliferation and ability to block apoptosis. Ross. Bioterpavt. Zh. 9, 3–12.

    Google Scholar 

  32. Akhlynina T.V., Gerasimova L.P., Sarkisyan G.P., et al. 2007. Kinetics of proliferation, differentiation, and apoptosis regulation gene transcription in human BCR/ABL+ Ph+ cells in culture. Tsitologiya. 49, 889–900.

    CAS  Google Scholar 

  33. Rozmarin A.D. 2000. Leukocytes. In: Patofiziologiya krovi (Pathophysiology of Blood). Ed. Shiffman F.D. St. Petersburg: BINOM, pp. 123–148.

    Google Scholar 

  34. Borregaard N., Cowland J.B. 1997. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood. 89, 3503–3521.

    PubMed  CAS  Google Scholar 

  35. Kozinets G.I., Kotel’nikov V.M. 1983. Kinetics of hematopoiesis and its clinical significance. Sov. Med. 4, 3–77.

    Google Scholar 

  36. Abramov M.G. 1985. Gematologicheskii atlas (Hematological Atlas). Moscow: Meditsina.

    Google Scholar 

  37. Grineva N.I., Baryshnikov A.Yu., Gerasimova L.P., et al. 2007. Kinetics of antigen expression during in vitro proliferation and differentiation of Ph+ cells from the peripheral blood of patients with chronic myelocytic leukemia. Ross. Bioterpavt. Zh. 6, 1–32.

    Google Scholar 

  38. Dean P.N. 1980. A simplified method of DNA distribution analysis. Cell Tissue Kinet. 13, 299–302.

    PubMed  CAS  Google Scholar 

  39. Fuchs T.A., Abed U., Goosmann C., Hurwitz R., et al. 2007. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176, 231–241.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Grineva.

Additional information

Original Russian Text © N.I. Grineva, T.V. Akhlynina, A.M. Timofeev, L.P. Gerasimova, D.A. Schmarov, N.M. Nydenova, T.E. Manakova, T.G. Sarycheva, L.G. Kovaleva, 2013, published in Molekulyarnaya Biologiya, 2013, Vol. 47, No. 4, pp. 642–655.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grineva, N.I., Akhlynina, T.V., Timofeev, A.M. et al. Apoptosis and neutrophils in the regulation of Ph-positive myeloid cell proliferation and differentiation ex vivo. Mol Biol 47, 559–571 (2013). https://doi.org/10.1134/S0026893313040043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893313040043

Keywords

Navigation