Log in

Transcription factor RUNX1

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Transcription factor RUNX1 is one of the key regulatory proteins in vertebrates. RUNX1 controls hematopoiesis and angiogenesis and is indispensable for the emergence of sites of definitive hematopoiesis during embryogenesis and for blood stem cells differentiation in adult bone marrow. The RUNX1 gene is a frequent target of chromosomal translocations causing acute leukemias. Many human leukemias are some-how associated with RUNX1 mutations. Nevertheless, the precise mechanism guiding the tissue-specific manner of RUNX1 expression remains unknown. The review summarizes the experimental data accumulated over the past twenty years, beginning from the date of the first annotation of the RUNX1 cDNA sequence. The structure, isoforms, covalent modifications, and role in various regulatory cascades are considered for the RUNX1 transcription factor, as well as the RUNX1 expression regulation, mutations, and the involvement in chromosomal translocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

UTR:

untranslated region

IRES:

internal ribosome entry site

References

  1. Miyoshi H., Shimizu K., Kozu T., Maseki N., Kaneko Y., Ohki M. 1991. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc. Natl. Acad. Sci. U. S. A. 88, 10431–10434.

    CAS  Google Scholar 

  2. Bae S.C., Ogawa E., Maruyama M., Oka H., Satake M., Shigesada K., Jenkins N.A., Gilbert D.J., Copeland N.G., Ito Y. 1994. PEBP2 alpha B/mouse AML1 consists of multiple isoforms that possess differential transactivation potentials. Mol. Cell. Biol. 14, 3242–3252.

    PubMed  CAS  Google Scholar 

  3. Bae S.C., Yamaguchi-Iwai Y., Ogawa E., Maruyama M., Inuzuka M., Kagoshima H., Shigesada K., Satake M., Ito Y. 1993. Isolation of PEBP2 alpha B cDNA representing the mouse homolog of human acute myeloid leukemia gene, AML1. Oncogene. 8, 809–814.

    CAS  Google Scholar 

  4. Nucifora G., Rowley J.D. 1995. AML1 and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia. Blood. 86, 1–14.

    PubMed  CAS  Google Scholar 

  5. Okuda T., van Deursen J., Hiebert S.W., Grosveld G., Downing J.R. 1996. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 84, 321–330.

    PubMed  CAS  Google Scholar 

  6. Sasaki K., Yagi H., Bronson R.T., Tominaga K., Matsunashi T., Deguchi K., Tani Y., Kishimoto T., Komori T. 1996. Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proc. Natl. Acad. Sci. U. S. A. 93, 12359–12363.

    PubMed  CAS  Google Scholar 

  7. Wang Q., Stacy T., Miller J.D., Lewis A.F., Gu T.L., Huang X., Bushweller J.H., Bories J.C., Alt F.W., Ryan G., Liu P.P., Wynshaw-Boris A., Binder M., Marin-Padilla M., Sharpe A.H., Speck N.A. 1996. The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell. 87, 697–708.

    PubMed  CAS  Google Scholar 

  8. Wang Q., Stacy T., Binder M., Marin-Padilla M., Sharpe A.H., Speck N.A. 1996. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. U. S. A. 93, 3444–3449.

    PubMed  CAS  Google Scholar 

  9. Cleary M.L. 1999. A new angle on a pervasive oncogene. Nature Genet. 23, 134–135.

    PubMed  CAS  Google Scholar 

  10. Uchida H., Zhang J., Nimer S.D. 1997. AML1A and AML1B can transactivate the human IL-3 promoter. J. Immunol. 158, 2251–2258.

    PubMed  CAS  Google Scholar 

  11. Niitsu N., Yamamoto-Yamaguchi Y., Miyoshi H., Shimizu K., Ohki M., Umeda M., Honma Y. 1997. AML1a but not AML1b inhibits erythroid differentiation induced by sodium butyrate and enhances the megakaryocytic differentiation of K562 leukemia cells. Cell Growth Differ. 8, 319–326.

    PubMed  CAS  Google Scholar 

  12. Martens J.H., Stunnenberg H.G. 2010. The molecular signature of oncofusion proteins in acute myeloid leukemia. FEBS Lett. 584, 2662–2669.

    PubMed  CAS  Google Scholar 

  13. De Braekeleer E., Ferec C., De Braekeleer M. 2009. RUNX1 translocations in malignant hemopathies. Anticancer Res. 29, 1031–1037.

    PubMed  Google Scholar 

  14. Pabst T., Mueller B.U. 2007. Transcriptional dysregulation during myeloid transformation in AML. Oncogene. 26, 6829–6837.

    PubMed  CAS  Google Scholar 

  15. Perry C., Eldor A., Soreq H. 2002. Runx1/AML1 in leukemia: Disrupted association with diverse protein partners. Leuk. Res. 26, 221–228.

    PubMed  CAS  Google Scholar 

  16. Westendorf J.J., Hiebert S.W. 1999. Mammalian runtdomain proteins and their roles in hematopoiesis, osteogenesis, and leukemia. J. Cell Biochem. 3233(Suppl.), 51–58.

    Google Scholar 

  17. Ito Y., Miyazono K. 2003. RUNX transcription factors as key targets of TGF-beta superfamily signaling. Curr. Opin. Genet. Dev. 13, 43–47.

    PubMed  CAS  Google Scholar 

  18. Ogawa E., Maruyama M., Kagoshima H., Inuzuka M., Lu J., Satake M., Shigesada K., Ito Y. 1993. PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc. Natl. Acad. Sci. U. S. A. 90, 6859–6863.

    PubMed  CAS  Google Scholar 

  19. Banerjee C., McCabe L.R., Choi J.Y., Hiebert S.W., Stein J.L., Stein G.S., Lian J.B. 1997. Runt homology domain proteins in osteoblast differentiation: AML3/CBFA1 is a major component of a bone-specific complex. J. Cell. Biochem. 66, 1–8.

    PubMed  CAS  Google Scholar 

  20. Levanon D., Negreanu V., Bernstein Y., Bar-Am I., Avivi L., Groner Y. 1994. AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization. Genomics. 23, 425–432.

    PubMed  CAS  Google Scholar 

  21. McCarthy T.L., Ji C., Chen Y., Kim K.K., Imagawa M., Ito Y., Centrella M. 2000. Runt domain factor (Runx)-dependent effects on CCAAT/enhancer-binding protein delta expression and activity in osteoblasts. J. Biol. Chem. 275, 21746–21753.

    PubMed  CAS  Google Scholar 

  22. Otto F., Lubbert M., Stock M. 2003. Upstream and downstream targets of RUNX proteins. J. Cell. Biochem. 89, 9–18.

    PubMed  CAS  Google Scholar 

  23. Rennert J., Coffman J.A., Mushegian A.R., Robertson A.J. 2003. The evolution of Runx genes: 1. A comparative study of sequences from phylogenetically diverse model organisms. BMC Evol. Biol. 3, 4.

    PubMed  Google Scholar 

  24. Levanon D., Groner Y. 2004. Structure and regulated expression of mammalian RUNX genes. Oncogene. 23, 4211–4219.

    PubMed  CAS  Google Scholar 

  25. Jimenez M.J., Balbin M., Alvarez J., Komori T., Bianco P., Holmbeck K., Birkedal-Hansen H., Lopez J.M., Lopez-Otin C. 2001. A regulatory cascade involving retinoic acid, Cbfa1, and matrix metalloproteinases is coupled to the development of a process of perichondrial invasion and osteogenic differentiation during bone formation. J. Cell Biol. 155, 1333–1344.

    PubMed  CAS  Google Scholar 

  26. Drissi H., Pouliot A., Koolloos C., Stein J.L., Lian J.B., Stein G.S., van Wijnen A.J. 2002. 1,25-(OH)2-vitamin D3 suppresses the bone-related Runx2/Cbfa1 gene promoter. Exp. Cell Res. 274, 323–333.

    PubMed  CAS  Google Scholar 

  27. Tou L., Quibria N., Alexander J.M. 2001. Regulation of human cbfa1 gene transcription in osteoblasts by selective estrogen receptor modulators (SERMs). Mol. Cell Endocrinol. 183, 71–79.

    PubMed  CAS  Google Scholar 

  28. Prince M., Banerjee C., Javed A., Green J., Lian J.B., Stein G.S., Bodine P.V., Komm B.S. 2001. Expression and regulation of Runx2/Cbfa1 and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts. J. Cell Biochem. 80, 424–440.

    PubMed  CAS  Google Scholar 

  29. Sudhakar S., Li Y., Katz M.S., Elango N. 2001. Translational regulation is a control point in RUNX2/Cbfa1 gene expression. Biochem. Biophys. Res. Commun. 289, 616–622.

    PubMed  CAS  Google Scholar 

  30. **ao Z.S., Simpson L.G., Quarles L.D. 2003. IRES-dependent translational control of Cbfa1/Runx2 expression. J. Cell. Biochem. 88, 493–505.

    PubMed  CAS  Google Scholar 

  31. Pozner A., Goldenberg D., Negreanu V., Le S.Y., Elroy-Stein O., Levanon D., Groner Y. 2000. Transcription-coupled translation control of AML1/RUNX1 is mediated by cap- and internal ribosome entry site-dependent mechanisms. Mol. Cell Biol. 20, 2297–2307.

    PubMed  CAS  Google Scholar 

  32. **ao G., Jiang D., Thomas P., Benson M.D., Guan K., Karsenty G., Franceschi R.T. 2000. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J. Biol. Chem. 275, 4453–4459.

    PubMed  CAS  Google Scholar 

  33. Tanaka T., Kurokawa M., Ueki K., Tanaka K., Imai Y., Mitani K., Okazaki K., Sagata N., Yazaki Y., Shibata Y., Kadowaki T., Hirai H. 1996. The extracellular signal-regulated kinase pathway phosphorylates AML1, an acute myeloid leukemia gene product, and potentially regulates its transactivation ability. Mol. Cell Biol. 16, 3967–3979.

    PubMed  CAS  Google Scholar 

  34. Komori T. 2011. Signaling networks in RUNX2-dependent bone development. J. Cell Biochem. 112, 750–755.

    PubMed  CAS  Google Scholar 

  35. Komori T. 2010. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res. 339, 189–195.

    PubMed  CAS  Google Scholar 

  36. Lee Y.M. 2011. Control of RUNX3 by histone methyltransferases. J. Cell Biochem. 112, 394–400.

    PubMed  CAS  Google Scholar 

  37. Kudo Y., Tsunematsu T., Takata T. 2011. Oncogenic role of RUNX3 in head and neck cancer. J. Cell Biochem. 112, 387–393.

    PubMed  CAS  Google Scholar 

  38. Chuang L.S., Ito Y. 2010. RUNX3 is multifunctional in carcinogenesis of multiple solid tumors. Oncogene. 29, 2605–2615.

    PubMed  CAS  Google Scholar 

  39. Zhang Y.W., Bae S.C., Huang G., Fu Y.X., Lu J., Ahn M.Y., Kanno Y., Kanno T., Ito Y. 1997. A novel transcript encoding an N-terminally truncated AML1/PEBP2 alphaB protein interferes with transactivation and blocks granulocytic differentiation of 32Dcl3 myeloid cells. Mol. Cell Biol. 17, 4133–4145.

    PubMed  CAS  Google Scholar 

  40. Tanaka T., Tanaka K., Ogawa S., Kurokawa M., Mitani K., Nishida J., Shibata Y., Yazaki Y., Hirai H. 1995. An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. EMBO J. 14, 341–350.

    PubMed  CAS  Google Scholar 

  41. Bartfeld D., Shimon L., Couture G.C., Rabinovich D., Frolow F., Levanon D., Groner Y., Shakked Z. 2002. DNA recognition by the RUNX1 transcription factor is mediated by an allosteric transition in the RUNT domain and by DNA bending. Structure. 10, 1395–1407.

    PubMed  CAS  Google Scholar 

  42. Ito Y. 2004. Oncogenic potential of the RUNX gene family: Overview. Oncogene. 23, 4198–4208.

    PubMed  CAS  Google Scholar 

  43. Bernardin F., Friedman A.D. 2002. AML1 stimulates G1 to S progression via its transactivation domain. Oncogene. 21, 3247–3252.

    PubMed  CAS  Google Scholar 

  44. Ahn M.Y., Huang G., Bae S.C., Wee H.J., Kim W.Y., Ito Y. 1998. Negative regulation of granulocytic differentiation in the myeloid precursor cell line 32Dcl3 by ear-2, a mammalian homolog of Drosophila seven-up, and a chimeric leukemogenic gene, AML1/ETO. Proc. Natl. Acad. Sci. U. S. A. 95, 1812–1817.

    PubMed  CAS  Google Scholar 

  45. Lutterbach B., Westendorf J.J., Linggi B., Isaac S., Seto E., Hiebert S.W. 2000. A mechanism of repression by acute myeloid leukemia-1, the target of multiple chromosomal translocations in acute leukemia. J. Biol. Chem. 275, 651–656.

    PubMed  CAS  Google Scholar 

  46. Kanno T., Kanno Y., Chen L.F., Ogawa E., Kim W.Y., Ito Y. 1998. Intrinsic transcriptional activation-inhibition domains of the polyomavirus enhancer binding protein 2/core binding factor alpha subunit revealed in the presence of the beta subunit. Mol. Cell Biol. 18, 2444–2454.

    PubMed  CAS  Google Scholar 

  47. Imai Y., Kurokawa M., Tanaka K., Friedman A.D., Ogawa S., Mitani K., Yazaki Y., Hirai H. 1998. TLE, the human homolog of Groucho, interacts with AML1 and acts as a repressor of AML1-induced transactivation. Biochem. Biophys. Res. Commun. 252, 582–589.

    PubMed  CAS  Google Scholar 

  48. Levanon D., Goldstein R.E., Bernstein Y., Tang H., Goldenberg D., Stifani S., Paroush Z., Groner Y. 1998. Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc. Natl. Acad. Sci. U. S. A. 95, 11590–11595.

    PubMed  CAS  Google Scholar 

  49. Li D., Sinha K.K., Hay M.A., Rinaldi C.R., Saunthararajah Y., Nucifora G. 2007. RUNX1-RUNX1 homodimerization modulates RUNX1 activity and function. J. Biol. Chem. 282, 13542–13551.

    PubMed  CAS  Google Scholar 

  50. Yamaguchi Y., Kurokawa M., Imai Y., Izutsu K., Asai T., Ichikawa M., Yamamoto G., Nitta E., Yamagata T., Sasaki K., Mitani K., Ogawa S., Chiba S., Hirai H. 2004. AML1 is functionally regulated through p300-mediated acetylation on specific lysine residues. J. Biol. Chem. 279, 15630–15638.

    PubMed  CAS  Google Scholar 

  51. Zhang Y., Biggs J.R., Kraft A.S. 2004. Phorbol ester treatment of K562 cells regulates the transcriptional activity of AML1c through phosphorylation. J. Biol. Chem. 279, 53116–53125.

    PubMed  CAS  Google Scholar 

  52. Bernardin-Fried F., Kummalue T., Leijen S., Collector M.I., Ravid K., Friedman A.D. 2004. AML1/RUNX1 increases during G1 to S cell cycle progression independent of cytokine-dependent phosphorylation and induces cyclin D3 gene expression. J. Biol. Chem. 279, 15678–15687.

    PubMed  CAS  Google Scholar 

  53. Zhang L., Fried F.B., Guo H., Friedman A.D. 2008. Cyclin-dependent kinase phosphorylation of RUNX1/AML1 on 3 sites increases transactivation potency and stimulates cell proliferation. Blood. 111, 1193–1200.

    PubMed  CAS  Google Scholar 

  54. Guo H., Friedman A.D. 2011. Phosphorylation of RUNX1 by cyclin-dependent kinase reduces direct interaction with HDAC1 and HDAC3. J. Biol. Chem. 286, 208–215.

    PubMed  CAS  Google Scholar 

  55. Biggs J.R., Peterson L.F., Zhang Y., Kraft A.S., Zhang D.E. 2006. AML1/RUNX1 phosphorylation by cyclin-dependent kinases regulates the degradation of AML1/RUNX1 by the anaphase-promoting complex. Mol. Cell Biol. 26, 7420–7429.

    PubMed  CAS  Google Scholar 

  56. Kim J.H., Lee S., Rho J.K., Choe S.Y. 1999. AML1, the target of chromosomal rearrangements in human leukemia, regulates the expression of human complement receptor type 1 (CR1) gene. Int. J. Biochem. Cell Biol. 31, 933–940.

    PubMed  CAS  Google Scholar 

  57. Friedman A.D. 2009. Cell cycle and developmental control of hematopoiesis by Runx1. J. Cell Physiol. 219, 520–524.

    PubMed  CAS  Google Scholar 

  58. Liu H., Holm M., **e X.Q., Wolf-Watz M., Grundstrom T. 2004. AML1/Runx1 recruits calcineurin to regulate granulocyte macrophage colony-stimulating factor by Ets1 activation. J. Biol. Chem. 279, 29398–29408.

    PubMed  CAS  Google Scholar 

  59. Redondo J.M., Pfohl J.L., Hernandez-Munain C., Wang S., Speck N.A., Krangel M.S. 1992. Indistinguishable nuclear factor binding to functional core sites of the T-cell receptor delta and murine leukemia virus enhancers. Mol. Cell Biol. 12, 4817–4823.

    PubMed  CAS  Google Scholar 

  60. Bristow C.A., Shore P. 2003. Transcriptional regulation of the human MIP-1alpha promoter by RUNX1 and MOZ. Nucleic Acids Res. 31, 2735–2744.

    PubMed  CAS  Google Scholar 

  61. Nuchprayoon I., Meyers S., Scott L.M., Suzow J., Hiebert S., Friedman A.D. 1994. PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2 beta/CBF beta proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol. Cell Biol. 14, 5558–5568.

    PubMed  CAS  Google Scholar 

  62. Petrovick M.S., Hiebert S.W., Friedman A.D., Hetherington C.J., Tenen D.G., Zhang D.E. 1998. Multiple functional domains of AML1: PU.1 and C/EBPalpha synergize with different regions of AML1. Mol. Cell Biol. 18, 3915–3925.

    PubMed  CAS  Google Scholar 

  63. Armesilla A.L., Calvo D., Vega M.A. 1996. Structural and functional characterization of the human CD36 gene promoter: Identification of a proximal PEBP2/CBF site. J. Biol. Chem. 271, 7781–7787.

    PubMed  CAS  Google Scholar 

  64. Puig-Kroger A., Lopez-Rodriguez C., Relloso M., Sanchez-Elsner T., Nueda A., Munoz E., Bernabeu C., Corbi A.L. 2000. Polyomavirus enhancer-binding protein 2/core binding factor/acute myeloid leukemia factors contribute to the cell type-specific activity of the CD11a integrin gene promoter. J. Biol. Chem. 275, 28507–28512.

    PubMed  CAS  Google Scholar 

  65. Harada Y., Harada H., Downing J.R., Kimura A. 2001. A hematopoietic-specific transmembrane protein, Art-1, is possibly regulated by AML1. Biochem. Biophys. Res. Commun. 284, 714–722.

    PubMed  CAS  Google Scholar 

  66. Linggi B., Muller-Tidow C., van de Locht L., Hu M., Nip J., Serve H., Berdel W.E., van der Reijden B., Quelle D.E., Rowley J.D., Cleveland J., Jansen J.H., Pandolfi P.P., Hiebert S.W. 2002. The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nature Med. 8, 743–750.

    PubMed  CAS  Google Scholar 

  67. Lutterbach B., Hiebert S.W. 2000. Role of the transcription factor AML-1 in acute leukemia and hematopoietic differentiation. Gene. 245, 223–235.

    PubMed  CAS  Google Scholar 

  68. Westendorf J.J., Yamamoto C.M., Lenny N., Downing J.R., Selsted M.E., Hiebert S.W. 1998. The t(8;21) fusion product, AML-1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation. Mol. Cell Biol. 18, 322–333.

    PubMed  CAS  Google Scholar 

  69. Hug B.A., Ahmed N., Robbins J.A., Lazar M.A. 2004. A chromatin immunoprecipitation screen reveals protein kinase Cbeta as a direct RUNX1 target gene. J. Biol. Chem. 279, 825–830.

    PubMed  CAS  Google Scholar 

  70. Shimada H., Ichikawa H., Nakamura S., Katsu R., Iwasa M., Kitabayashi I., Ohki M. 2000. Analysis of genes under the downstream control of the t(8;21) fusion protein AML1-MTG8: Overexpression of the TIS11b (ERF-1, cMG1) gene induces myeloid cell proliferation in response to G-CSF. Blood. 96, 655–663.

    PubMed  CAS  Google Scholar 

  71. Huang G., Zhang P., Hirai H., Elf S., Yan X., Chen Z., Koschmieder S., Okuno Y., Dayaram T., Growney J.D., Shivdasani R.A., Gilliland D.G., Speck N.A., Nimer S.D., Tenen D.G. 2008. PU.1 is a major down-stream target of AML1 (RUNX1) in adult mouse hematopoiesis. Nature Genet. 40, 51–60.

    PubMed  CAS  Google Scholar 

  72. Namba K., Abe M., Saito S., Satake M., Ohmoto T., Watanabe T., Sato Y. 2000. Indispensable role of the transcription factor PEBP2/CBF in angiogenic activity of a murine endothelial cell MSS31. Oncogene. 19, 106–114.

    PubMed  CAS  Google Scholar 

  73. Kitabayashi I., Yokoyama A., Shimizu K., Ohki M. 1998. Interaction and functional cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell differentiation. EMBO J. 17, 2994–3004.

    PubMed  CAS  Google Scholar 

  74. Aikawa Y., Nguyen L.A., Isono K., Takakura N., Tagata Y., Schmitz M.L., Koseki H., Kitabayashi I. 2006. Roles of HIPK1 and HIPK2 in AML1- and p300-dependent transcription, hematopoiesis and blood vessel formation. EMBO J. 25, 3955–3965.

    PubMed  CAS  Google Scholar 

  75. Peng Z.G., Zhou M.Y., Huang Y., Qiu J.H., Wang L.S., Liao S.H., Dong S., Chen G.Q. 2008. Physical and functional interaction of Runt-related protein 1 with hypoxia-inducible factor-1alpha. Oncogene. 27, 839–847.

    PubMed  CAS  Google Scholar 

  76. Pugh C.W., Ratcliffe P.J. 2003. Regulation of angiogenesis by hypoxia: Role of the HIF system. Nature Med. 9, 677–684.

    PubMed  CAS  Google Scholar 

  77. Manalo D.J., Rowan A., Lavoie T., Natarajan L., Kelly B.D., Ye S.Q., Garcia J.G., Semenza G.L. 2005. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood. 105, 659–669.

    PubMed  CAS  Google Scholar 

  78. Strom D.K., Nip J., Westendorf J.J., Linggi B., Lutterbach B., Downing J.R., Lenny N., Hiebert S.W. 2000. Expression of the AML-1 oncogene shortens the G(1) phase of the cell cycle. J. Biol. Chem. 275, 3438–3445.

    PubMed  CAS  Google Scholar 

  79. Peterson L.F., Boyapati A., Ranganathan V., Iwama A., Tenen D.G., Tsai S., Zhang D.E. 2005. The hematopoietic transcription factor AML1 (RUNX1) is negatively regulated by the cell cycle protein cyclin D3. Mol. Cell Biol. 25, 10205–10219.

    PubMed  CAS  Google Scholar 

  80. Simeone A., Daga A., Calabi F. 1995. Expression of runt in the mouse embryo. Dev. Dyn. 203, 61–70.

    PubMed  CAS  Google Scholar 

  81. Theriault F.M., Roy P., Stifani S. 2004. AML1/Runx1 is important for the development of hindbrain cholinergic branchiovisceral motor neurons and selected cranial sensory neurons. Proc. Natl. Acad. Sci. U. S. A. 101, 10343–10348.

    PubMed  CAS  Google Scholar 

  82. Theriault F.M., Nuthall H.N., Dong Z., Lo R., Barnabe-Heider F., Miller F.D., Stifani S. 2005. Role for Runx1 in the proliferation and neuronal differentiation of selected progenitor cells in the mammalian nervous system. J. Neurosci. 25, 2050–2061.

    PubMed  CAS  Google Scholar 

  83. Marmigere F., Montelius A., Wegner M., Groner Y., Reichardt L.F., Ernfors P. 2006. The Runx1/AML1 transcription factor selectively regulates development and survival of TrkA nociceptive sensory neurons. Nature Neurosci. 9, 180–187.

    PubMed  CAS  Google Scholar 

  84. Wang X., Blagden C., Fan J., Nowak S.J., Taniuchi I., Littman D.R., Burden S.J. 2005. Runx1 prevents wasting, myofibrillar disorganization, and autophagy of skeletal muscle. Genes Dev. 19, 1715–1722.

    PubMed  CAS  Google Scholar 

  85. Zhu X., Yeadon J.E., Burden S.J. 1994. AML1 is expressed in skeletal muscle and is regulated by innervation. Mol. Cell Biol. 14, 8051–8057.

    PubMed  CAS  Google Scholar 

  86. Zaidi S.K., Dowdy C.R., van Wijnen A.J., Lian J.B., Raza A., Stein J.L., Croce C.M., Stein G.S. 2009. Altered Runx1 subnuclear targeting enhances myeloid cell proliferation and blocks differentiation by activating a miR-24/MKP-7/MAPK network. Cancer Res. 69, 8249–8255.

    PubMed  CAS  Google Scholar 

  87. Brioschi M., Fischer J., Cairoli R., Rossetti S., Pezzetti L., Nichelatti M., Turrini M., Corlazzoli F., Scarpati B., Morra E., Sacchi N., Beghini A. 2010. Down-regulation of microRNAs 222/221 in acute myelogenous leukemia with deranged core-binding factor subunits. Neoplasia. 12, 866–876.

    PubMed  CAS  Google Scholar 

  88. Levanon D., Bernstein Y., Negreanu V., Ghozi M.C., Bar-Am I., Aloya R., Goldenberg D., Lotem J., Groner Y. 1996. A large variety of alternatively spliced and differentially expressed mRNAs are encoded by the human acute myeloid leukemia gene AML1. DNA Cell Biol. 15, 175–185.

    PubMed  CAS  Google Scholar 

  89. Ghozi M.C., Bernstein Y., Negreanu V., Levanon D., Groner Y. 1996. Expression of the human acute myeloid leukemia gene AML1 is regulated by two promoter regions. Proc. Natl. Acad. Sci. U. S. A. 93, 1935–1940.

    PubMed  CAS  Google Scholar 

  90. Leiden J.M., Thompson C.B. 1994. Transcriptional regulation of T-cell genes during T-cell development. Curr. Opin. Immunol. 6, 231–237.

    PubMed  CAS  Google Scholar 

  91. Perez C., Coeffier E., Moreau-Gachelin F., Wietzerbin J., Benech P.D. 1994. Involvement of the transcription factor PU.1/Spi-1 in myeloid cell-restricted expression of an interferon-inducible gene encoding the human high-affinity Fc gamma receptor. Mol. Cell Biol. 14, 5023–5031.

    PubMed  CAS  Google Scholar 

  92. Faisst S., Meyer S. 1992. Compilation of vertebrate-encoded transcription factors. Nucleic Acids Res. 20, 3–26.

    PubMed  CAS  Google Scholar 

  93. Wasylyk B., Hahn S.L., Giovane A. 1993. The Ets family of transcription factors. Eur. J. Biochem. 211, 7–18.

    PubMed  CAS  Google Scholar 

  94. Klemsz M.J., McKercher S.R., Celada A., van Beveren C., Maki R.A. 1990. The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell. 61, 113–124.

    PubMed  CAS  Google Scholar 

  95. Bee T., Swiers G., Muroi S., Pozner A., Nottingham W., Santos A.C., Li P.S., Taniuchi I., de Bruijn M.F. Non-redundant roles for Runx1 alternative promoters reflect their activity at discrete stages of developmental hematopoiesis. Blood. 115, 3042–3050.

  96. Bee T., Liddiard K., Swiers G., Bickley S.R., Vink C.S., Jarratt A., Hughes J.R., Medvinsky A., de Bruijn M.F. 2009. Alternative Runx1 promoter usage in mouse developmental hematopoiesis. Blood Cells Mol. Dis. 43, 35–42.

    PubMed  CAS  Google Scholar 

  97. Sroczynska P., Lancrin C., Kouskoff V., Lacaud G. 2009. The differential activities of Runx1 promoters define milestones during embryonic hematopoiesis. Blood. 114, 5279–5289.

    PubMed  CAS  Google Scholar 

  98. Lam E.Y., Chau J.Y., Kalev-Zylinska M.L., Fountaine T.M., Mead R.S., Hall C.J., Crosier P.S., Crosier K.E., Flores M.V. 2009. Zebrafish runx1 promoter-EGFP transgenics mark discrete sites of definitive blood progenitors. Blood. 113, 1241–1249.

    PubMed  CAS  Google Scholar 

  99. Nottingham W.T., Jarratt A., Burgess M., Speck C.L., Cheng J.F., Prabhakar S., Rubin E.M., Li P.S., Sloane-Stanley J., Kong A.S.J., de Bruijn M.F. 2007. Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer. Blood. 110, 4188–4197.

    PubMed  CAS  Google Scholar 

  100. Bee T., Ashley E.L., Bickley S.R., Jarratt A., Li P.S., Sloane-Stanley J., Gottgens B., de Bruijn M.F. 2009. The mouse Runx1 +23 hematopoietic stem cell enhancer confers hematopoietic specificity to both Runx1 promoters. Blood. 113, 5121–5124.

    PubMed  CAS  Google Scholar 

  101. Ng C.E., Yokomizo T., Yamashita N., Cirovic B., ** H., Wen Z., Ito Y., Osato M.A. 2010. Runx1 intronic enhancer marks hemogenic endothelial cells and hematopoietic stem cells. Stem Cells. 28, 1869–1881.

    PubMed  CAS  Google Scholar 

  102. Markova E.N., Kantidze O.L., Razin S.V. 2011. Transcriptional regulation and spatial organisation of the human AML1/RUNX1 gene. J. Cell. Biochem. 112, 1997–2005.

    PubMed  CAS  Google Scholar 

  103. Ben-Ami O., Pencovich N., Lotem J., Levanon D., Groner Y. 2009. A regulatory interplay between miR-27a and Runx1 during megakaryopoiesis. Proc. Natl. Acad. Sci. U. S. A. 106, 238–243.

    PubMed  CAS  Google Scholar 

  104. Feng J., Iwama A., Satake M., Kohu K. 2009. MicroRNA-27 enhances differentiation of myeloblasts into granulocytes by post-transcriptionally downregulating Runx1. Br. J. Haematol. 145, 412–423.

    PubMed  CAS  Google Scholar 

  105. Rowley J.D. 1973. Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann. Genet. 16, 109–112.

    PubMed  CAS  Google Scholar 

  106. Rowley J.D. 1998. The critical role of chromosome translocations in human leukemias. Annu. Rev. Genet. 32, 495–519.

    PubMed  CAS  Google Scholar 

  107. Era T., Asou N., Kunisada T., Yamasaki H., Asou H., Kamada N., Nishikawa S., Yamaguchi K., Takatsuki K. 1995. Identification of two transcripts of AML1/ETO-fused gene in t(8;21) leukemic cells and expression of wild-type ETO gene in hematopoietic cells. Genes Chromosomes Cancer. 13, 25–33.

    PubMed  CAS  Google Scholar 

  108. Era T., Asou N., Yamaguchi K., Yamasaki H., Kamada N., Nishikawa S., Takatsuki K. 1995. Expression of AML1 and ETO transcripts in hematopoietic cells. Leukemia. 9,Suppl. 1, S26–S28.

    PubMed  Google Scholar 

  109. Wang J., Hoshino T., Redner R.L., Kajigaya S., Liu J.M. 1998. ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc. Natl. Acad. Sci. U. S. A. 95, 10860–10865.

    PubMed  CAS  Google Scholar 

  110. Lutterbach B., Westendorf J.J., Linggi B., Patten A., Moniwa M., Davie J.R., Huynh K.D., Bardwell V.J., Lavinsky R.M., Rosenfeld M.G., Glass C., Seto E., Hiebert S.W. 1998. ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol. Cell Biol. 18, 7176–7184.

    PubMed  CAS  Google Scholar 

  111. Gelmetti V., Zhang J., Fanelli M., Minucci S., Pelicci P.G., Lazar M.A. 1998. Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol. Cell Biol. 18, 7185–7191.

    PubMed  CAS  Google Scholar 

  112. Downing J.R., Higuchi M., Lenny N., Yeoh A.E. 2000. Alterations of the AML1 transcription factor in human leukemia. Semin. Cell Dev. Biol. 11, 347–360.

    PubMed  CAS  Google Scholar 

  113. Zent C., Rowley J.D., Nucifora G. 1997. Rearrangements of the AML1/CBFA2 gene in myeloid leukemia with the 3;21 translocation: In vitro and in vivo studies. Leukemia. 11,Suppl. 3, 273–278.

    PubMed  Google Scholar 

  114. Nucifora G., Begy C.R., Erickson P., Drabkin H.A., Rowley J.D. 1993. The 3;21 translocation in myelodysplasia results in a fusion transcript between the AML1 gene and the gene for EAP, a highly conserved protein associated with the Epstein-Barr virus small RNA EBER 1. Proc. Natl. Acad. Sci. U. S. A. 90, 7784–7788.

    PubMed  CAS  Google Scholar 

  115. Nguyen T.T., Ma L.N., Slovak M.L., Bangs C.D., Cherry A.M., Arber D.A. 2006. Identification of novel Runx1 (AML1) translocation partner genes SH3D19, YTHDf2, and ZNF687 in acute myeloid leukemia. Genes Chromosomes Cancer. 45, 918–932.

    PubMed  CAS  Google Scholar 

  116. Sakai I., Tamura T., Narumi H., Uchida N., Yakushi** Y., Hato T., Fujita S., Yasukawa M. 2005. Novel RUNX1-PRDM16 fusion transcripts in a patient with acute myeloid leukemia showing t(1;21)(p36;q22). Genes Chromosomes Cancer. 44, 265–270.

    PubMed  CAS  Google Scholar 

  117. Hromas R., Shopnick R., Jumean H.G., Bowers C., Varella-Garcia M., Richkind K. 2000. A novel syndrome of radiation-associated acute myeloid leukemia involving AML1 gene translocations. Blood. 95, 4011–4013.

    PubMed  CAS  Google Scholar 

  118. Richkind K., Hromas R., Lytle C., Crenshaw D., Velasco J., Roherty S., Srinivasiah J., Varella-Garcia M. 2000. Identification of two new translocations that disrupt the AML1 gene. Cancer Genet. Cytogenet. 122, 141–143.

    PubMed  CAS  Google Scholar 

  119. Slovak M.L., Bedell V., Popplewell L., Arber D.A., Schoch C., Slater R. 2002. 21q22 balanced chromosome aberrations in therapy-related hematopoietic disorders: Report from an international workshop. Genes Chromosomes Cancer. 33, 379–394.

    PubMed  Google Scholar 

  120. Nucifora G., Begy C.R., Kobayashi H., Roulston D., Claxton D., Pedersen-Bjergaard J., Parganas E., Ihle J.N., Rowley J.D. 1994. Consistent intergenic splicing and production of multiple transcripts between AML1 at 21q22 and unrelated genes at 3q26 in (3;21)(q26;q22) translocations. Proc. Natl. Acad. Sci. U. S. A. 91, 4004–4008.

    PubMed  CAS  Google Scholar 

  121. Mikhail F.M., Coignet L., Hatem N., Mourad Z.I., Farawela H.M., El Kaffash D.M., Farahat N., Nucifora G. 2004. A novel gene, FGA7, is fused to RUNX1/AML1 in a t(4;21)(q28;q22) in a patient with T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer. 39, 110–118.

    PubMed  CAS  Google Scholar 

  122. Mikhail F.M., Serry K.A., Hatem N., Mourad Z.I., Farawela H.M., El Kaffash D.M., Coignet L., Nucifora G. 2002. AML1 gene over-expression in childhood acute lymphoblastic leukemia. Leukemia. 16, 658–668.

    PubMed  CAS  Google Scholar 

  123. Roulston D., Espinosa R., 3rd, Nucifora G., Larson R.A., Le Beau M.M., Rowley J.D. 1998. CBFA2(AML1) translocations with novel partner chromosomes in myeloid leukemias: Association with prior therapy. Blood. 92, 2879–2885.

    PubMed  CAS  Google Scholar 

  124. Paulsson K., Bekassy A.N., Olofsson T., Mitelman F., Johansson B., Panagopoulos I. 2006. A novel and cytogenetically cryptic t(7;21)(p22;q22) in acute myeloid leukemia results in fusion of RUNX1 with the ubiquitin-specific protease gene USP42. Leukemia. 20, 224–229.

    PubMed  CAS  Google Scholar 

  125. Miyoshi H., Kozu T., Shimizu K., Enomoto K., Maseki N., Kaneko Y., Kamada N., Ohki M. 1993. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J. 12, 2715–2721.

    PubMed  CAS  Google Scholar 

  126. Imagama S., Abe A., Suzuki M., Hayakawa F., Katsumi A., Emi N., Kiyoi H., Naoe T. 2007. LRP16 is fused to RUNX1 in monocytic leukemia cell line with t(11;21)(q13;q22). Eur. J. Haematol. 79, 25–31.

    PubMed  CAS  Google Scholar 

  127. Ramsey H., Zhang D.E., Richkind K., Burcoglu-O’Ral A., Hromas R. 2003. Fusion of AML1/Runx1 to copine VIII, a novel member of the copine family, in an aggressive acute myelogenous leukemia with t(12;21) translocation. Leukemia. 17, 1665–1666.

    PubMed  CAS  Google Scholar 

  128. Golub T.R., Barker G.F., Bohlander S.K., Hiebert S.W., Ward D.C., Bray-Ward P., Morgan E., Raimondi S.C., Rowley J.D., Gilliland D.G. 1995. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. U. S. A. 92, 4917–4921.

    PubMed  CAS  Google Scholar 

  129. Romana S.P., Poirel H., Leconiat M., Flexor M.A., Mauchauffe M., Jonveaux P., Macintyre E.A., Berger R., Bernard O.A. 1995. High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood. 86, 4263–4269.

    PubMed  CAS  Google Scholar 

  130. Gamou T., Kitamura E., Hosoda F., Shimizu K., Shinohara K., Hayashi Y., Nagase T., Yokoyama Y., Ohki M. 1998. The partner gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG8 (ETO) family. Blood. 91, 4028–4037.

    PubMed  CAS  Google Scholar 

  131. Huret J.L., Senon S., Bernheim A., Dessen P. 2004. An atlas on genes and chromosomes in oncology and haematology. Cell. Mol. Biol. (Noisy-le-Grand). 50, 805–807.

    CAS  Google Scholar 

  132. Zhang Y., Emmanuel N., Kamboj G., Chen J., Shurafa M., Van Dyke D.L., Wiktor A., Rowley J.D. 2004. PRDX4, a member of the peroxiredoxin family, is fused to AML1 (RUNX1) in an acute myeloid leukemia patient with a t(X;21)(p22;q22). Genes Chromosomes Cancer. 40, 365–370.

    PubMed  CAS  Google Scholar 

  133. Chan E.M., Comer E.M., Brown F.C., Richkind K.E., Holmes M.L., Chong B.H., Shiffman R., Zhang D.E., Slovak M.L., Willman C.L., Noguchi C.T., Li Y., Heiber D.J., Kwan L., Chan R.J., Vance G.H., Ramsey H.C., Hromas R.A. 2005. AML1-FOG2 fusion protein in myelodysplasia. Blood. 105, 4523–4526.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Markova.

Additional information

Original Russian Text © E.N. Markova, N.V. Petrova, S.V. Razin, O.L. Kantidze, 2012, published in Molekulyarnaya Biologiya, 2012, Vol. 46, No. 6, pp. 846–859.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markova, E.N., Petrova, N.V., Razin, S.V. et al. Transcription factor RUNX1. Mol Biol 46, 755–767 (2012). https://doi.org/10.1134/S0026893312050081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893312050081

Keywords

Navigation