Log in

Diversity and Possible Activity of Microorganisms in Underground Gas Storage Aquifers

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Underground natural gas storage facilities (UGS) have been recently proposed as sites to store “green” gas containing biogas, synthetic methane, and molecular hydrogen. The composition of the UGS microbial communities and the effect of H2 on these communities are poorly understood. This work deals with determination of microbial diversity in the samples of reservoir water from the underground horizons of the Shchelkovo, Kasimov, and Kaluga UGS. Groundwater is an anaerobic habitat containing acetic and other lower fatty acids, methanol, and dissolved gases that may serve as substrates for microorganisms. Low abundance of cultivated aerobic organotrophic bacteria and anaerobic fermenting, sulfate-reducing, and methanogenic microorganisms in the studied samples was shown. High-throughput sequencing of the V4 region of the 16S rRNA gene revealed the presence of Firmicutes (2.4–53.6%), Bacteroidetes (1.0–39.7%), Alphaproteobacteria (0.9–9.6%), Actinobacteria (0.1–1.7%), Desulfobacteria (0.1–1.6%), Verrucomicrobia (0–3.4%), and Planctomycetes (0–1.3%) in the studied microbial communities. The share of archaeal sequences in the libraries did not exceed 1.5%. In the water sample from the Kaluga UGS, members of the genus Marinobacter predominated; methanogens of the genera Methanosphaera, Methanolobus, and Methanobrevibacter were found among the minor components. Methylotrophic bacteria of the genera Methylococcus and Methylobacterium‒Methylorubrum and anaerobic fermenting bacteria of the genus Bacteroides predominated in the reservoir water from the Shchelkovo and Kasimov UGSs. Using the iVikodak program, the potential ability of microbial communities to use methane, methanol, benzoate, and polycyclic aromatic hydrocarbons, as well as to participate in the transformations of sulfur and nitrogen compounds, was shown. In the underground communities, bacteria and archaea were found, potentially capable of using H2 in their energy metabolism, including the processes of sulfate reduction, methanogenesis and acetogenesis. These results indicate that microbiological and geochemical monitoring is required during the operation of UGS, especially during the injection of hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Barsuk, N.E., Khaidina, M.P., and Khan, S.A., “Green gas” in the European gas transport system, Gazovaya Promyshlennost’, 2018., no. 10, pp. 104–109.

  2. Basso, O., Lascourreges, J.F., Le Borgne, F., Le Goff, C., and Magot, M., Characterization by culture and molecular analysis of the microbial diversity of a deep subsurface gas storage aquifer, Res. Microbiol., 2009, vol. 160, pp. 107–116. https://doi.org/10.1016/j.resmic.2008.10.010

    Article  CAS  PubMed  Google Scholar 

  3. Belyaev, S.S. and Borzenkov, I.A., Microbial transformation of low-molecular-weight carbon compounds in the deep subsurface, in Biogeochemistry of Global Change, New York: Chapman & Hall, 1993, pp. 825–838.

    Google Scholar 

  4. Bidzhieva, S.Kh., Sokolova, D.Sh., Tourova, T.P., and Nazina, T.N., Bacteria of the genus Sphaerochaeta from low-temperature heavy-oil reservoirs (Russia), Microbiology (Moscow), 2018, vol. 87, pp. 757–765.

    Article  CAS  Google Scholar 

  5. Bonch-Osmolovskaya, E.A., Miroshnichenko, M.L., Lebedinsky, A.V., Chernyh, N.A., Nazina, T.N., Ivoilov, V.S., Belyaev, S.S., Boulygina, E.S., Lysov, Yu.P., Perov, A.N., Mirzabekov, A.D., Hippe, H., Stackebrandt, E., L’Haridon, S., and Jeanthon, C., Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir, Appl. Environ. Microbiol., 2003, vol. 69, pp. 6143–6151. https://doi.org/10.1128/aem.69.10.6143-6151.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carrier, V., Svenning, M.M., Gründger, F., Niemann, H., Dessandier, P.-A., Panieri, G., Kalenitchenko, D., The impact of methane on microbial communities at marine arctic gas hydrate bearing sediment, Front. Microbiol., 2020, vol. 11, art. 1932. https://doi.org/10.3389/fmicb.2020.01932

    Article  PubMed  PubMed Central  Google Scholar 

  7. Correia, C., Besson, S., Brondino, C.D., Gonzalez, P.J., Fauque, G., Lampreia, J., Moura, I., and Moura, J.J.G., Biochemical and spectroscopic characterization of the membrane-bound nitrate reductase from Marinobacter hydrocarbonoclasticus 617, J. Biol. Inorg. Chem., 2008, vol. 13, pp. 1321–1333. https://doi.org/10.1007/s00775-008-0416-1

    Article  CAS  PubMed  Google Scholar 

  8. Doerfert, S.N., Reichlen, M., Iyer, P., Wang, M., and Ferry, J.G., Methanolobus zinderi sp. nov., a methylotrophic methanogen isolated from a deep subsurface coal seam, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 1064–1069. https://doi.org/10.1099/ijs.0.003772-0

    Article  CAS  PubMed  Google Scholar 

  9. Dopffel, N., Jansen, S., and Gerritse, J., Microbial side effects of underground hydrogen storage—Knowledge gaps, risks and opportunities for successful implementation, Int. J. Hydrogen Energy, 2021, vol. 46, pp. 8594‒8606. https://doi.org/10.1016/j.ijhydene.2020.12.058

    Article  CAS  Google Scholar 

  10. Duran, R., Marinobacter, in Handbook of Hydrocarbon and Lipid Microbiology, Timmis, K.N., Ed., Berlin: Springer, 2010, pp. 1725‒1735. https://doi.org/10.1007/978-3-540-77587-4_122

    Book  Google Scholar 

  11. Edgar R.C., Search and clustering orders of magnitude faster than BLAST, Bioinformatics, 2010, vol. 26, pp. 2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  12. Edgar, R.C., UPARSE: highly accurate OTU sequences from microbial amplicon reads, Nature Methods, 2013, vol. 10. P. 996–998. https://doi.org/10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  13. Gohl, D.M., MacLean, A., Hauge, A., Becker, A., Walek, D., and Beckman, K.B., An optimized protocol for high-throughput amplicon-based microbiome profiling, Protoc. Exch., 2016. https://doi.org/10.1038/protex.2016.030

  14. Gregory, S.P., Barnett, M.J., Field, L.P., and Milodowski, A.E., Subsurface microbial hydrogen cycling: natural occurrence and implications for industry, Microorganisms, 2019, vol. 7, art. 53. https://doi.org/10.3390/microorganisms7020053

    Article  CAS  PubMed Central  Google Scholar 

  15. Hakobyan, A., Zhu, J., Glatter, T., Paczia, N., and Liesack, W., Hydrogen utilization by Methylocystis sp. strain SC2 expands the known metabolic versatility of type IIa methanotrophs, Metab. Eng., 2020, vol. 61, pp. 181–196. https://doi.org/10.1016/j.ymben.2020.05.003

    Article  CAS  PubMed  Google Scholar 

  16. Ho, J.Y., Jong, M.C., Acharya, K., Liew, S.S.X., Smith, D.R., Noor, Z.Z., Goodson, M.L., Werner, D., Graham, D.W., and Eswaran, J., Multidrug-resistant bacteria and microbial communities in a river estuary with fragmented suburban waste management, J. Hazard Mater., 2021, vol. 405, art. 124687. https://doi.org/10.1016/j.jhazmat.2020.124687

    Article  CAS  PubMed  Google Scholar 

  17. Hou, R., Gan, L., Guan, F., Wang, Y., Li, J., Zhou, S., and Yuan, Y., Bioelectrochemically enhanced degradation of bisphenol S: mechanistic insights from stable isotope-assisted investigations, iScience, 2020, vol. 24, art. 102014. https://doi.org/10.1016/j.isci.2020.102014

  18. Hugerth, L.W., Muller, E.E.L., Hu, Y.O.O., Lebrun, L.A.M., Roume, H., Lundin, D., Wilmes, P., and Andersson, A.F., Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia, PLoS One, 2014, vol. 9, art. e95567. https://doi.org/10.1371/journal.pone.0095567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ivanova, A.E., Borzenkov, I.A., Tarasov, A.L., Milekhina, E.I., and Belyaev, S.S., A microbiological study of an underground gas storage in the process of gas injection, Microbiology (Moscow), 2007a, vol. 76, pp. 515‒523.

    CAS  PubMed  Google Scholar 

  20. Ivanova, A.E., Borzenkov, I.A., Tarasov, A.L., Milekhina, E.I., and Belyaev, S.S., A microbiological study of an underground gas storage in the process of gas extraction, Microbiology (Moscow), 2007b, vol. 76, pp. 524‒532.

    CAS  PubMed  Google Scholar 

  21. Jo, S.Y., Na Rhie, M., Jung, S.M., Sohn, Y.J., Yeon, Y.J., Kim, M.-S., Park, C., Lee, J., Park, S.J., and Na, J.-G., Hydrogen production from methane by Methylomonas sp. DH-1 under micro-aerobic conditions, Biotechnol. Bioprocess. Eng., 2020, vol. 25, pp. 71–77. https://doi.org/10.1007/s12257-019-0256-6

    Article  CAS  Google Scholar 

  22. Jung, G.-Y., Rhee, S.-K., Han, Y.-S., and So-Jeong Kim, S.J., Genomic and physiological properties of a facultative methane-oxidizing bacterial strain of Methylocystis sp. from a wetland, Microorganisms, 2020, vol. 8, art. 1719. https://doi.org/10.3390/microorganisms8111719

    Article  CAS  PubMed Central  Google Scholar 

  23. Kalyuzhnaya, M.G., Yang, S., Rozova, O.N., Smalley, N.E., Clubb, J., Lamb, A., Gowda, G.A.N., Raftery, D., Fu, Y., Bringel, F., Vuilleumier, S., Beck, D.A.C., Trotsenko, Y.A., Khmelenina, V.N., and Lidstrom, M.E., Highly efficient methane biocatalysis revealed in a methanotrophic bacterium, Nat. Commun., 2013, vol. 4, art. 2785. https://doi.org/10.1038/ncomms3785

    Article  CAS  PubMed  Google Scholar 

  24. Magot, M., Ollivier, B., and Patel, B.K.C., Microbiology of petroleum reservoirs, Antonie van Leeuwenhoek, 2000, vol. 77, pp. 103–116. https://doi.org/10.1023/a:1002434330514

    Article  CAS  PubMed  Google Scholar 

  25. Merkel, A.Yu., Tarnovetskii, I.Yu., Podosokorskaya, O.A., and Toshchakov, S.V., Analysis of 16S rRNA primer systems for profiling of thermophilic microbial communities, Microbiology (Moscow), 2019, vol. 88, pp. 671–680.

    Article  CAS  Google Scholar 

  26. Metsalu, T. and Vilo, J., ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap, Nucleic Acids Res., 2015, vol. 43, pp. W566–W570. https://doi.org/10.1093/nar/gkv468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miller, T.L. and Wolin, M.J., Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen, Arch. Microbiol., 1985, vol. 141, pp. 116–122. https://doi.org/10.1007/BF00423270

    Article  CAS  PubMed  Google Scholar 

  28. Mochimaru, H., Tamaki, H., Hanada, S., Imachi, H., Nakamura, K., Sakata, S., and Kamagata, Y., Methanolobus profundi sp. nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, pp. 714–718. https://doi.org/10.1099/ijs.0.001677-0

    Article  CAS  PubMed  Google Scholar 

  29. Moser, D.P., Gihring, T.M., Brockman, F.J., Fredrickson, J.K., Balkwill, D.L., Dollhopf, M.E., Lollar, B.S., Pratt, L.M., Boice, E., Southam, G., Wanger, G., Baker, B.J., Pfiffner, S.M., Lin, L.-H., and Onstott, T.C., Desulfotomaculum and Methanobacterium spp. dominate a 4- to 5-kilometer-deep fault, Appl. Environ. Microbiol., 2005, vol. 71, pp. 8773–8783. https://doi.org/10.1128/AEM.71.12.8773-8783.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nagpal, S., Haque, M.M., Singh, R., and Mande, S.S., iVikodak—a platform and standard workflow for inferring, analyzing, comparing, and visualizing the functional potential of microbial communities, Front. Microbiol., 2019, vol. 9, art. 3336. https://doi.org/10.3389/fmicb.2018.03336

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nazina, T.N., Ivanova, A.E., Borzenkov, I.A., Belyaev, S.S., and Ivanov, M.V., Occurrence and geochemical activity of microorganisms in high-temperature, water-flooded oil fields of Kazakhstan and Western Siberia, Geomicrobiol. J., 1995, vol. 13, pp. 181–192. https://doi.org/10.1080/01490459509378016

    Article  CAS  Google Scholar 

  32. Nazina, T.N., Shestakova, N.M., Ivoilov, V.S., Kostrukova, N.K., Belyaev, S.S., and Ivanov, M.V., Radiotracer assay of microbial processes in petroleum reservoirs, Adv. Biotechnol. Microbiol. 2017, vol. 2, art. 555591. https://juniperpublishers.com/aibm/pdf/AIBM.MS.ID.555591.pdf.

  33. Pedersen, K., Bengtsson, A.F., Edlund, J.S., and Eriksson, L.C., Sulphate-controlled diversity of subterranean microbial communities over depth in deep groundwater with opposing gradients of sulphate and methane, Geomicrobiol., J. 2014, vol. 31, pp. 617–631. https://doi.org/10.1080/01490451.2013.879508

    Article  CAS  Google Scholar 

  34. Pérez-Pantoja, D., De la Iglesia, R., Pieper, D.H., and González, B., Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134, FEMS Microbiol. Rev., 2008, vol. 32, pp. 736–794. https://doi.org/10.1111/j.1574-6976.2008.00122.x

    Article  CAS  PubMed  Google Scholar 

  35. Postgate, J.R. The Sulfate-Reducing Bacteria, Cambridge: Cambridge Univ. Press, 1984, 2nd ed.

    Google Scholar 

  36. Šmigáň, P., Greksák, M., Kozánkova, J., Buzek, F., Onderka, V., and Wolf, I., Methanogenic bacteria as a key factor involved in changes of town gas stored in an underground reservoir, FEMS Microbiol. Lett., 1990, vol. 73, pp. 221–224. https://doi.org/10.1111/j.1574-6968.1990.tb03944.x

    Article  Google Scholar 

  37. Tarasov, A.L., Borzenkov, I.A., Chernykh, N.A., and Belyayev, S.S., Isolation and investigation of anaerobic microorganisms involved in methanol transformation in an underground gas storage facility, Microbiology (Moscow), 2011a, vol. 80, pp. 172–179.

    Article  CAS  Google Scholar 

  38. arasov, A.L., Borzenkov, I.A., and Belyayev, S.S., Investigation of the trophic relations between anaerobic microorganisms from an underground gas repository during methanol utilization, Microbiology (Moscow), 2011b, vol. 80, pp. 180–187

    Article  CAS  Google Scholar 

  39. Widdel, F. and Bak, F., Gram-negative mesophilic sulfate-reducing bacteria, in The Prokaryotes, Balows, A., Trü-per, H.G., Dworkin, M., Harder, W., and Schleifer K.-Z., Eds., New York: Springer, 1992, Ch. 183, pp. 3352–3337.

    Google Scholar 

  40. Zerva, I., Remmas, N., Kagalou, I., Melidis, P., Ariantsi, M., Sylaios, G., and Ntougias, S., Effect of chlorination on microbiological quality of effluent of a full-scale wastewater treatment plant, Life (Basel), 2021, vol. 11, art. 68. 10.3390/life11010068                                                  

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Microbiological investigation of formation water of the underground gas storage facilities was carried out within the subject “Scientific Substantiation of Optimal Conditions for Underground Hydrogen Storage Jointly with Methane” (no. AAAA-A19-119101690016-9). Bioinfromatics analysis of microbial communities was supported by the Russian Federation Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Nazina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Sigalevich

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazina, T.N., Abukova, L.A., Tourova, T.P. et al. Diversity and Possible Activity of Microorganisms in Underground Gas Storage Aquifers. Microbiology 90, 621–631 (2021). https://doi.org/10.1134/S002626172105012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626172105012X

Keywords:

Navigation