Log in

Microbial composition of the activated sludge of Moscow wastewater treatment plants

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The contribution of the major technologically important microbial groups (ammonium- and nitrite-oxidizing, phosphate-accumulating, foam-inducing, and anammox bacteria, as well as planctomycetes and methanogenic archaea) was characterized for the aeration tanks of the Moscow wastewater treatment facilities. FISH investigation revealed that aerobic sludge were eubacterial communities; the metabolically active archaea contributed insignificantly. Stage II nitrifying microorganisms and planctomycetes were significant constituents of the bacterial component of activated sludges, with Nitrobacter spp. being the dominant nitrifiers. No metabolically active anammox bacteria were revealed in the sludge from aeration tanks. The sludge from the aeration tanks using different wastewater treatment technologies were found to have differing characteristics. Abundance of the nitrifying and phosphate-accumulating bacteria in the sludge generally correlated with microbial activity in microcosms and with efficiency of nitrogen and phosphorus removal from wastewater. The highest microbial numbers and activity were found in the sludge of the tanks operating according to the technologies developed in the universities of Hannover and Cape Town. The activated sludge from the Novokur’yanovo facilities, where abundant growth of filamentous bacteria resulted in foam formation, exhibited the lowest activity. The group of foaming bacteria included Gordonia spp. and Acinetobacter spp utilizing petroleum and motor oils, Sphaerotilus spp. utilizing unsaturated fatty acids, and Candidatus ‘Microthrix parvicella’. Thus, the data on abundance and composition of metabolically active microorganisms obtained by FISH may be used for the technological control of wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nozhevnikova, A.N., Biological treatment of organic wastes, in Ekologiya mikroorganizmov (Microbial Ecology), Netrusov, A.N, Ed., Moscow: Akademiya, 2004, pp. 175–195.

    Google Scholar 

  2. Nielsen, P.H., Nguyen, H.T.T., McIlroy, S.J., Mielczarek, A.T., and Seviour, R., Identification of polyphosphate-accumulating and glycogen-accumulating organisms by FISH, in FISH Handbook for Biological Wastewater Treatment. Identification and Quantification of microorganisms in Activated Sludge Biofilms by FISH, Nielsen, P.H., Daims, H., and Lemmer, H., Eds., London: IWA, 2009, pp. 25–31.

    Google Scholar 

  3. Sevior, R. and Nielsen, P.H., Microbial communities in activated sludge plants, in Microbial Ecology of Activated Sludge, Sevior, R. and Nielsen, P.H., Eds., London: IWA, 2010, pp. 95–126.

    Google Scholar 

  4. Bjornsson, L., Hugenholtz, P., Tyson, G.W., and Blackall, L.L., Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal, Microbiology (UK), 2002, vol. 148, pp. 2309–2318.

    CAS  Google Scholar 

  5. Metodika tekhnologicheskogo kontrolya raboty ochistnykh sooruzhenii gorodskoi kanalizatsii (Methods for technological Control of the Operation of Municipal Sewage Treatment Plants), Moscow: Stroiizdat, 1977.

  6. Kozlov, M.N., Danilovich, D.A., Sklyar, V.I., Moizhes, O.V., Dorofeev, A.G., and Grachev, V.A., Monitoring of the biochemical activity of the sludge of the Moscow purification installations, Vodosnab. San. Tekhn., 2006, no. 11, pp. 49–55.

    Google Scholar 

  7. Janssen, P.M.J., Meinema, K., and van der Roest, H.F., Biological Phosphorus Removal: Manual for Design and Operation, London: IWA, 2002.

    Google Scholar 

  8. Pankratov, T.A., Belova, S.E., and Dedysh, S.N., Evaluation of the phylogenetic diversity of prokaryotic microorganisms in Sphagnum peat bogs by means of fluorescence in situ hybridization (FISH), Microbiology (Moscow), 2005, vol. 74, no. 6, pp. 722–728.

    Article  CAS  Google Scholar 

  9. Amann, R.I., Binder, B.J., Olsen, R.J., Chisholm, S.W., Devereux, R., and Stahl, D.A., Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations, Appl. Environ. Microbiol., 1990, vol. 56, pp. 1919–1925.

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Amann, R.I., Krumholz, L., and Stahl, D.A., Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology, J. Bacteriol., 1990, vol. 172, pp. 762–770.

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Zarda, B., Hahn, D., Chatziotas, A., Schonhuber, W., Neef, A., Amann, R.I., and Zeyer, J., Analysis of bacterial community structure in bulk soil by in situ hybridization, Arch. Microbiol., 1997, vol. 168, pp. 185–192.

    Article  CAS  Google Scholar 

  12. Stahl, D.A. and Amann, R., Development and application of nucleic acid probes, in Nucleic Acid Techniques in Bacterial Systematic, Stackebrandt, E. and Goodfellow, M., Eds., New York: Wiley, 1991, pp. 205–248.

    Google Scholar 

  13. Daims, H., Brühl, A., Amann, R., Schleifer, K.-H., and Wagner, M., The domain-specific probe EUB338 is insufficient for the detection of all bacteria: Development and evaluation of a more comprehensive probe set, Syst. Appl. Microbiol., 1999, vol. 22, pp. 434–444.

    Article  PubMed  CAS  Google Scholar 

  14. Neef, A., Amann, R., Schlesner, H., and Schleifer, K.H., Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes, Microbiology (UK), 1998, vol. 144, pp. 3257–3266.

    Article  CAS  Google Scholar 

  15. Wagner, M., Rath, G., Amann, R., Koops, H.-P., and Schleifer, K.-H., In situ identification of ammoniaoxidizing bacteria, Syst. Appl. Microbiol., 1995, vol. 18, pp. 251–264.

    Article  CAS  Google Scholar 

  16. Mobarry, B.K., Wagner, M., Urbain, V., Rittmann, B.E., and Stahl, D.A., Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria, Appl. Environ. Microbiol., 1996, vol. 62, pp. 2156–2162.

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Wagner, M., Rath, G., Koops, H.P., Flood, J., and Amann, R., In situ analysis of nitrifying bacteria in sewage treatment plants, Wat. Sci. Technol., 1996, vol. 34, pp. 237–244.

    Article  CAS  Google Scholar 

  18. Daims, H., Nielsen, J.L., Nielsen, P.H., Schleifer, K.H., and Wagner, M., In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants, Appl. Environ. Microbiol., 2001, vol. 67, pp. 5273–5284.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Crocetti, G.R., Hugenholtz, P., Bond, P.L., Schuler, A., Keller, J., Jenkins, D., and Blackall, L.L., Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantification, Appl. Environ. Microbiol., 2000, vol. 66, pp. 1175–1182.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Wagner, M., Erhart, R., Manz, W., Amann, R., Lemmer, H., Wedi, D., and Schleifer, K.-H., Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge, Appl. Environ. Microbiol., 1994, vol. 60, pp. 792–800.

    PubMed  CAS  PubMed Central  Google Scholar 

  21. De los Reyes, F.L., Ritter, W., and Raskin, L., Groupspecific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems, Appl. Environ. Microbiol., 1997, vol. 63, pp. 1107–1117.

    PubMed  PubMed Central  Google Scholar 

  22. Erhart, R., Bradford, D., Seviour, R.J., Amann, R., and Blackall, L.L., Development and use of fluorescent in situ hybridization probes for the detection and identification of “Microthrix parvicella” in activated sludge, Syst. Appl. Microbiol., 1997, vol. 20, pp. 310–318.

    Article  Google Scholar 

  23. Schmid, M., Walsh, K., Webb, R., Rijpstra, W.I., van de Pas-Schoonen, K., Verbruggen, M.J., Hill, T., Moffett, B., Fuerst, J., Schouten, S., Damsté, J.S., Harris, J., Shaw, P., Jetten, M., and Strous, M., Candidatus “Scalindua brodae,” sp. nov., Candidatus “Scalindua wagneri,” sp. nov., two new species of anaerobic ammonium oxidizing bacteria, Syst. Appl. Microbiol., 2003, vol. 26, pp. 529–538.

    Article  PubMed  CAS  Google Scholar 

  24. Jurgens, G., Glöckner, F., Amann, R., Saano, A., Montonen, L., Likolammi, M., and Munster, U., Identification of novel archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization, FEMS Microbiol. Ecol., 2000, vol. 34, pp. 45–56.

    PubMed  CAS  Google Scholar 

  25. Sorensen, A., Torsvik, V., Torsvik, T., Poulsen, L., and Ahring, B., Whole-cell hybridization of Methanosarcina cells with two new oligonucleotide probes, Appl. Environ. Microbiol., 1997, vol. 63, pp. 3043–3050.

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Bassin, J.P., Pronk, M., Muyzer, G., Kleerebezem, R., Dezotti, M., and van Loosdrecht, M.C.M., Effect of elevated salt concentrations on the aerobic granular sludge process: linking microbial activity with microbial community structure, Appl. Environ. Microbiol., 2011, vol. 77, pp. 7942.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Nielsen, J.L. and Nielsen, P.H., Quantification of functional groups in activated sludge by microautoradiography, Wat. Sci. Technol., 2002, vol. 46, pp. 389–395.

    CAS  Google Scholar 

  28. Bouvier, T. and del Giorgio, P.A., Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports, FEMS Microbiol. Ecol., 2003, vol. 44, pp. 3–15.

    Article  PubMed  CAS  Google Scholar 

  29. Kondrat’eva, E.N., Avtotrofnye prokarioty (Autotrophic Prokaryotes), Ivanovskii, R.N., Ed., Moscow: Mos. Gos. Univ., 1996.

  30. Daims, H., Maixner, F., and Schmid, M.C., The nitrifying microbes: Ammonia oxidizers, nitrite oxidizers, and anaerobic ammonium oxidizers, in FISH Handbook for Biological Wastewater Treatment. Identification and Quantification of Microorganisms in Activated Sludge Biofilms by FISH, Nielsen, P.H., Daims, H., and Lemmer, H., Eds., London: IWA, 2009, pp. 9–17.

    Google Scholar 

  31. Chiellini, C., Munz, G., Petroni, G., Lubello, C., Mori, G., Verni, F., and Vannini, C., Characterization and comparison of bacterial communities selected in conventional activated sludge and membrane bioreactor pilot plants: a focus on Nitrospira and Planctomycetes bacterial phyla, Curr. Microbiol., 2013, vol. 67, pp. 77–90.

    Article  PubMed  CAS  Google Scholar 

  32. Seviour, R.J., Mino, T., and Onuki, M., The microbiology of biological phosphorus removal in activated sludge systems, FEMS Microbiol. Rev., 2003, vol. 27, pp. 99–127.

    Article  PubMed  CAS  Google Scholar 

  33. Hesselmann, R.P.X., Werlen, C., Hahn, D., van der Meer, J.R., and Zehnder, A.J.B., Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge, Syst. Appl. Microbiol., 1999, vol. 22, pp. 454–465.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Kallistova.

Additional information

Original Russian Text © A.Yu. Kallistova, N.V. Pimenov, M.N. Kozlov, Yu.A. Nikolaev, A.G. Dorofeev, V.G. Aseeva, V.A. Grachev, E.V. Men’ko, Yu.Yu. Berestovskaya, A.N. Nozhevnikova, M.V. Kevbrina, 2014, published in Mikrobiologiya, 2014, Vol. 83, No. 5, pp. 615–625.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallistova, A.Y., Pimenov, N.V., Kozlov, M.N. et al. Microbial composition of the activated sludge of Moscow wastewater treatment plants. Microbiology 83, 699–708 (2014). https://doi.org/10.1134/S0026261714050154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714050154

Keywords

Navigation