Log in

Are There Restrictions Related to the Presence of Land Plants for Reconstructing Rivers of Different Categories?

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The article analyzes the distribution of datapoints of individual and averaged mudstones samples from almost 40 sedimentary successions of the Neoproterozoic–Ordovician (epoch lacking land plants) and the Devonian–Holocene (time of the appearance and abundance of land plants—“green epoch”) in the (La/Yb)N–Eu/Eu*, (La/Yb)N–(Eu/Sm)N, and (La/Yb)N–Th diagrams with classification fields of the silty–pelitic particulate matter in the estuary of different-category modern rivers. No fundamental differences between the “green epoch” and pre-Silurian rivers were revealed. In combination with other data, the above fact suggests the following conclusion: since the terrestrial vegetation is absent (and not only in the Neoproterozoic–Ordovician), the categories of rivers, which drained different (in area and composition) catchment areas and transported the fine-grained particulate material to the shelf zones were not fundamentally different from those at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Notes

  1. Hereinafter, symbol “N” designates the chondrite-normalized REE concentration (Taylor and McLennan, 1985).

  2. River category: (1) large rivers (>100 000 km2) characterized by intricate water catchment areas; (2) rivers draining the mixed/sedimentary rocks; (3) rivers fed by rock erosion products from “igneous/metamorphic” terrains; and (4) rivers draining the volcanic rock provenances.

  3. According to (Naugol’nykh, 2019), “…all essential prerequisites appeared in the Early Paleozoic (if not earlier) for the land colonization by higher plants, e.g., Volkhoviella primitiva”.

  4. We could not find the lithogeochemical data on mudstones of the Silurian sedimentary sequences in the available literature.

  5. (\({\text{F}}{{{\text{e}}}_{{\text{2}}}}{\text{O}}_{3}^{*}\)) total iron as Fe2O3.

  6. In the vast majority of previous publications, we used the data on bulk chemical analyses, in which the LOI values did not exceed 5 wt %. Accordingly, the proportion of carbonate components was small, and the SiO2 content did not differ significantly from the typical PAAS or other similar reference objects. However, when choosing analytical data for this publication, it turned out that many authors operate with the “natural” and not somehow recalculated values of compositions. Therefore, here, we also follow this approach.

REFERENCES

  1. Abre, P., Cingolani, C., Zimmermann, U., et al., Provenance of Ordovician clastic sequences of the San Rafael Block (Central Argentina), with emphasis on the Ponón Trehué Formation, Gondwana Res., 2011, vol. 19, pp. 275–290.

    Article  Google Scholar 

  2. Abu El-Enen, M.M., Geochemistry, provenance, and metamorphic evolution of Gabal Samra Neoproterozoic metapelites, Sinai, Egypt, J. Afr. Earth Sci., 2011, vol. 59, pp. 269–282.

    Article  Google Scholar 

  3. Acharyya, S.K., Roy, D.K., and Mitra, N.D., Stratigraphy and palaeontology of the Naga Hills Ophiolite Belt, Geol. Surv. India Mem., 1986, vol. 119, pp. 64–79.

    Google Scholar 

  4. Alekseev, V.P., Fedorov, Yu.N., Maslov, A.V., et al., Sostav i genezis otlozhenii tyumenskoi svity Shaimskogo neftegazonosnogo raiona (Zapadnaya Sibir) (Composition and Genesis of Rocks of the Tyumen Formation in the Shaim Petroliferous Region, Western Siberia), Yekaterinburg: UGGU, 2007.

  5. Amon, E.O., Alekseev, V.P., Glebov, A.F., et al., Stratigrafiya i paleogeografiya mezozoisko-kainozoiskogo osadochnogo chekhla Shaimskogo neftegazonosnogo raiona (Zapadnaya Sibir) (Stratigraphy and Paleogeography of the Meso-Cenozoic Sedimentary Cover in the Shaim Petroliferous Region, Western Siberia), Yekaterinburg: UGGU, 2010.

  6. Armstrong-Altrin, J.S., Nagarajan, R., Madhavaraju, J., et al., Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango region, Hidalgo, eastern Mexico: Implications for source-area weathering, provenance, and tectonic setting, C. R. Geosci., 2013, vol. 345, pp. 185–202.

    Article  Google Scholar 

  7. Atlas i ob"yasnitel’naya zapiska k Atlasu litologo-paleogeograficheskikh kart yurskogo i melovogo periodov Zapadno-Sibirskoi ravniny v masshtabe 1 : 5 000 000 (Atlas and Explanatory Note to the Atlas of Jurassic and Cretaceous Lithological-Paleogeographic Maps of the West Siberian Plains, Scale 1 : 5 000 000), Tyumen: ZapSibNIGNI, 1976.

  8. Bayon, G., Toucanne, S., Skonieczny, C., et al., Rare earth elements and neodymium isotopes in world river sediments revisited, Geochim. Cosmochim. Acta, 2015, vol. 170, pp. 17–38.

    Article  Google Scholar 

  9. Bekker, Yu.R., Pozdnedokembriiskaya molassa Yuzhnogo Urala (Late Precambrian Molasse in the South Urals), Leningrad: Nedra, 1968.

  10. Bes, de Berc, S., Soula, J.C., Baby, P., et al., Geomorphic evidence of active deformation and uplift in a modern continental wedge-top-foredeep transition: Example of the eastern Ecuadorian Andes, Tectonophysics, 2005, vol. 399, pp. 351–380.

  11. Braccialli, L., Marroni, M., Pandolfi, L., and Rocchi, S., Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): from source areas to configuration of margins, in Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry, Arribas, J., Critelli, S., and Johnsson, M.J., Eds., Geol. Soc. Am. Spec. Pap., 2007, vol. 420, pp. 73–93.

    Google Scholar 

  12. Chakraborty, T. and Sarkar, S., Evidence of lacustrine sedimentation in the Upper Permian Bijori Formation, Satpura Gondwana Basin: palaeogeographical and tectonic implications, J. Earth Syst. Sci., 2005, vol. 114, pp. 303–323.

    Article  Google Scholar 

  13. Chang, K.H., A review on the stratigraphy and recent researches of the Cretaceous Gyeongsang Basin, Korea. in Mesozoic Sedimentation, Igneous Activity and Mineralization in South Korea, **, M.S., Lee, S.R., Choi, H.I., Park, K.H., Park, S.M., Koh, S.M., and Cho, D.L., Eds., Daejeon: Korea Inst. Geosci. Miner. Resour., 2002, pp. 1–9.

    Google Scholar 

  14. Condie, K.C., Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales, Chem. Geol., 1993, vol. 104, pp. 1–37.

    Article  Google Scholar 

  15. Condie, K.C. and Wronkiewicz, D.A., The Cr/Th ratio in Precambrian pelites from the Kaapvaal Craton as an index of craton evolution, Earth Planet. Sci. Lett., 1990, vol. 97, pp. 256–267.

    Article  Google Scholar 

  16. Corenblit, D. and Steiger, J., Vegetation as a major conductor of geomorphic changes on the earth surface: toward evolutionary geomorphology, Earth Surf. Process. Landf., 2009, vol. 34, pp. 891–896.

    Article  Google Scholar 

  17. Cotter, E., The evolution of fluvial style, with special reference to the central Appalachian Palaeozoic, in Fluvial Sedimentology, Miall, A.D., Ed., Can. Soc. Petrol. Geol. Mem., 1978, vol. 5, pp. 361–384.

    Google Scholar 

  18. Cullers, R.L., The control on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, U.S.A., Chem. Geol., 1995, vol. 123, pp. 107–131.

    Article  Google Scholar 

  19. Cullers, R.L., Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA, Chem. Geol., 2002, vol. 191, pp. 305–327.

    Article  Google Scholar 

  20. Davies, S.J. and Pickering, K.T., Stratigraphic control on mudrock chemistry, Kimmeridgian boulder bed succession, NE Scotland, Chem. Geol., 1999, vol. 156, pp. 5–23.

    Article  Google Scholar 

  21. Davies, N.S., Gibling, M.R., and Rygel, M.C., Alluvial facies evolution during the Palaeozoic greening of the continents: case studies, conceptual models and modern analogues, Sedimentology, 2011, vol. 58, pp. 220–258.

    Article  Google Scholar 

  22. Dott, R.H.J., The importance of eolian abrasion in supermature quartz sandstones and the paradox of weathering on vegetation-free landscapes, J. Geol., 2003, vol. 111, pp. 387–405.

    Article  Google Scholar 

  23. Dubinin, A.V., Geokhimiya redkozemel’nykh elementov v okeane (Geochemistry of Rare Earth Elements in the Ocean), Moscow: Nauka, 2006.

  24. Ekhlakov, Yu.A., Ugryumov, A.N., and Sanfirova, S.S., New data on the structure of the Krasnosel’kup Group in western Siberia, Geol., Geofiz. Razrabot. Neft. Gaz. Mestorozhd., 2012, no. 7, pp. 16–25.

  25. Fedo, C.M. and Cooper, J.D., Sedimentology and sequence stratigraphy of Neoproterozoic and Cambrian units across a craton-margin hinge zone, southeastern California, and implications for the early evolution of the Cordilleran margin, Sediment. Geol., 2001, vol. 141/142, pp. 501–522.

    Article  Google Scholar 

  26. Fedorov, Yu.N., Maslov, A.V., Alekseev, V.P., et al., Systamtics of rare earth and several trace elements in Jurassic rocks of the Severnyi Pokachev deposit (latitudinal Ob region), Gorn. Vedomosti, 2007, no. 12, pp. 24–37.

  27. Fralick, P. and Zaniewski, K., Sedimentology of a wet, pre-vegetation floodplain assemblage, Sedimentology, 2012, vol. 59, pp. 1030–1049.

    Article  Google Scholar 

  28. Ganti, V., Whittaker, A.C., Lamb, M.P., and Fischer, W.W., Low-gradient, single-threaded rivers prior to greening of the continents, Proc. Natl. Acad. Sci. USA, 2019, vol. 116, no. 24, pp. 11 652–11 657.

    Article  Google Scholar 

  29. Geochemistry of Sediments and Sedimentary Rocks: Evolutionary Considerations to Mineral Deposit-Forming Environments, Lentz, D.R., Ed., Geol. Ass. Canada, 2003.

    Google Scholar 

  30. Ghosh, S. and Sarkar, S., Geochemistry of Permo-Triassic mudstone of the Satpura Gondwana basin, central India: Clues for provenance, Chem. Geol., 2010, vol. 277, pp. 78–100.

    Article  Google Scholar 

  31. Ghosh, S.K., Chakraborty, C., and Chakraborty, T., Combined tide and wave influence on sedimentation of lower Gondwana coal measures of central India: Barakar Formation (Permian), Satpura basin, J. Geol. Soc. Lond., 2004, vol. 161, pp. 117–131.

    Article  Google Scholar 

  32. Ghosh, P., Sarkar, S., and Maulik, P., Sedimentology of a muddy alluvial deposit: Triassic Denwa Formation, India, Sediment. Geol., 2006, vol. 191, pp. 3–36.

    Article  Google Scholar 

  33. Gibling, M.R., Davies, N.S., Falcon-Lang, H.J., et al., Palaeozoic co-evolution of rivers and vegetation: a synthesis of current knowledge, Proc. Geol. Ass., 2014, vol. 125, pp. 524–533.

    Article  Google Scholar 

  34. Gordeev, V.V., Rechnoi stok v okean i cherty ego geokhimii (River Discharge and Signatures of Its Geochemistry), Moscow: Nauka, 1983.

  35. Gordeev, V.V., Geokhimiya sistemy reka-more (Geochemistry of the River–Sea System), Moscow: IP Matushkina, 2012.

  36. Gordeev, V.V., The global role of the oceanic marginal filter, in Osadochnye basseiny, sedimentatsionnye i postsedimentatsionnye protsessy v geologicheskoi istorii (Sedimentary Basins, Sedimentation, and Postsedimentary Processes in the Geological History), Novosibirsk: INGG SO RAN, 2013, vol. I, pp. 242–244.

  37. Gordeev, V.V. and Lisitsyn, A.P., Geochemical interaction between the freshwater and marine hydrospheres, Geol. Geofiz., 2014, vol. 55, no. 5–6, pp. 721–744.

    Google Scholar 

  38. Grazhdankin, D.V. and Maslov, A.V., Position of the Vendian in the International Stratigraphic Scale, Geol. Geofiz., 2015, vol. 56, no. 4, pp. 703–717.

    Google Scholar 

  39. Grazhdankin, D.V., Maslov, A.V., and Krupenin, M.T., Structure and depositional history of the Vendian Sylvitsa Group in the western flank of the Central Urals, Stratigr. Geol. Correl., 2009, vol. 17, no. 5, pp. 476–492.

    Article  Google Scholar 

  40. Gul, M., Gurbuz, K., and Cronin, B.T., Provenance of the northern part of the Kahramanmaras Peripheral Foreland Basin (Miocene, S. Turkey), J. Asian Earth Sci., 2011, vol. 40, pp. 475–495.

    Article  Google Scholar 

  41. Herron, M.M., Geochemical classification of terrigenous sands and shales from core or log data, J. Sediment. Res., 1988, vol. 58, pp. 820–829.

    Google Scholar 

  42. Ichaso, A.A. and Dalrymple, R.W., Tide- and wave-generated fluid mud deposits in the Tijle Formation (Jurassic), offshore Norway, Geology, 2009, vol. 37, pp. 539–542.

    Article  Google Scholar 

  43. Ielpi, A. and Lapotre, M.G.A., Biotic forcing militates against river meandering in the modern Bonneville Basin of Utah, Sedimentology, 2019, vol. 66, pp. 1896–1929.

    Article  Google Scholar 

  44. Ielpi, A., Rainbird, R.H., Ventra, D., and Ghinassi, M., Morphometric convergence between Proterozoic and post-vegetation rivers, Nature Commun., 2017, vol. 8, no. 1, p. 15250. https://doi.org/10.1038/ncomms15250

    Article  Google Scholar 

  45. Imchen, W., Thong, G.T., and Pongen, T., Provenance, tectonic setting and age of the sediments of the Upper Disang Formation in the Phek district, Nagaland, J. Asian Earth Sci., 2014, vol. 88, pp. 11–27.

    Article  Google Scholar 

  46. Karadag, M.M., Geochemistry, provenance and tectonic setting of the Late Cambrian-Early Ordovician Seydisehir Formation in the Caltepe and Fele areas, SE Turkey, Chemie Erde, 2014, vol. 74, pp. 205–224.

    Article  Google Scholar 

  47. Karaseva, T.V., Maslov, A.V., and Ronkin Yu.L., Peculiarities in the microelement composition of sedimentary rocks at deep intervals of Borehole SG-7 (En-Yakhinsk), Geol., Geofiz. Razr. Neft. Gaz. Mestorozhd., 2016, no. 5, pp. 20–27.

  48. Keller, C. and Wood, B., Possibility of chemical weathering before the advent of vascular land plants, Nature, 1993, vol. 364, pp. 223–225.

    Article  Google Scholar 

  49. Kennedy, M.J. and Droser, M.L., Early Cambrian metazoans in fluvial environments, evidence of the non-marine Cambrian radiation, Geology, 2011, vol. 39, pp. 583–586.

    Article  Google Scholar 

  50. Kholodov, V.N., Geokhimiya osadochnogo protsessa (Geochemistry of the Sedimentary Process), Moscow: GEOS, 2006.

  51. Lagutenkova, N.S. and Chepikova I.K., Verkhnedokembriiskie otlozheniya Volgo-Ural’skoi oblasti i perspektivy ikh neftegazonosnosti (Upper Precambrian Deposits in the Volga–Ural Region and Perspectives of Their Petroleum Potential), Moscow: Nauka, 1982.

  52. Lee, Y.I., Provenance derived from the geochemistry of Late Paleozoic-Early Mesozoic mudrocks of the Pyeongan Supergroup, Korea, Sediment. Geol., 2002, vol. 149, pp. 219–235.

    Article  Google Scholar 

  53. Lee, Y.I., Geochemistry of shales of the Upper Cretaceous Hayang Group, SE Korea: Implications for provenance and source weathering at an active continental margin, Sediment. Geol., 2009, vol. 215, pp. 1–12.

    Article  Google Scholar 

  54. Lisitsyn, A.P., Osadkoobrazovanie v okeanakh (Sedimentation in Oceans), Moscow: Nauka, 1974.

  55. Lisitsyn, A.P., Marginal filters of oceans, Okeanologiya, 1994, vol. 34, no. 5, pp. 735–747.

    Google Scholar 

  56. Long, D.G.F., Architecture and depositional style of fluvial systems before land plants: a comparison of Precambrian, early Paleozoic modern river deposits, in From River to Rock Record: The Preservation of Fluvial Sediments and their Subsequent Interpretation, Davidson, S.K., Leleu, S., North, C.P., Eds., SEPM Spec. Publ., 2011, vol. 97, pp. 37–61.

  57. Marconato, A., Almeida, R.P., Turra, B.B., and Fragoso-Cesar, A.R.S., Prevegetation fluvial floodplains and channel-belts in the Late Neoproterozoic–Cambrian Santa Bárbara Group (Southern Brazil), Sediment. Geol., 2014, vol. 300, pp. 49–61.

    Article  Google Scholar 

  58. Maslov, A.V., Lithofacies features of the Upper Riphean deposits in the South Urals, Communication 2: Facies and paleogeography of the deposition time of terrigenous-carbonate complexes of the upper part of the Zil’merdak Formation, Litol. Polezn. Iskop., 1986, no. 3, pp. 116–124.

  59. Maslov, A.V. Paleogeography of the Late Riphean in the South Urals, Izv. AN SSSR. Ser. Geol., 1987, no. 1, pp. 76–85.

  60. Maslov, A.V., Lithochemical features of rocks of different microfacies in the Lowee Mesozoic section of the Severnyi Pokachev deposit (Latititudinal Ob region), in Litologiya i geologiya goryuchikh iskopaemykh (Lithology and Geology of Fossil Fuels), Yekaterinburg: UGGU, 2007, pp. 172–178.

  61. Maslov, A.V., The Bezgodov Formation on the western slope of the Middle Urals: Some geochemical characteristics of the fine-grained terrigenous rocks, Ezhegodnik-2008, Yekaterinburg: IGG UrO RAN, 2009, pp. 150–153.

    Google Scholar 

  62. Maslov, A.V., Lithogeochemical appearance of deposits of the Vendian Asha Group on the western slope of the South Urals, Litosfera, 2014, no. 1, pp. 13–32.

  63. Maslov, A.V., Reconstruction of the category of rivers making up the sedimentary infill in Riphean basins at the conjugation of the East European Platform with the modern South Urals, Izv. Vyssh. Uchebn. Zaved., Geol. Razv., 2019, no. 5, pp. 28–36.

  64. Maslov, A.V., Geochemical proxies of endo- and exospheric processes in sedimentary sequences and the Upper Precambrian section in the South Urals, Lithol. Miner. Resour., 2020a, no. 4, pp. 261–285.

  65. Maslov, A.V., Categories of catchment areas-sources the fine-grained alumiosiliclastics for deposits of the Vendian Serebryanka and Sylvitsa groups (Middle Urals), Litosfera, 2020b, vol. 20, no. 6, pp. 751–770.

    Google Scholar 

  66. Maslov, A.V., Types of provenances for Upper Precambrian deposits in the Volga–Ural region, Vestn. Perm. Univ. Geol., 2020c, vol. 19, no. 2, pp. 101–110.

    Google Scholar 

  67. Maslov, A.V. and Alekseev, V.P., Peculiarities of the chemical composition and REE-Th-Sc-systematics of the Lower Mesozoic fine-grained terrigenous rocks in the Shaim petroliferous region (western Siberia), Izv. Vyssh. Uchebn. Zaved., Geol. Razv., 2007, no. 2, pp. 21–30.

  68. Maslov, A.V. and Isherskaya, M.V., The depositional setting of Upper Vendian rocks in the Volga–Ural region: the Staropetrovsk Formation in the Shkapovo–Shikhan depression, Litosfera, 2005, no. 1, pp. 41–69.

  69. Maslov, A.V. and Podkovyrov, V.N., The types of rivers that feed the Riphean sedimentation basins of the southeast margin of the Siberian Platform: A sketch of reconstruction, Russ. J. Pacif. Geol., 2021a, vol. 40, no. 4, pp. 370–387.

    Article  Google Scholar 

  70. Maslov, A.V. and Podkovyrov, V.N., Early Precambrian metaaleuropelites: REE–Th systematics as a key to reconstruction of sources for their fine-grained aluminosiliciclastics, Lithol. Miner. Resour., 2021b, no. 3, pp. 212–235.

  71. Maslov, A.V. and Podkovyrov V.N., Categories of catchment areas-sources of the fine-grained aluminosiliciclastics for Vendian sedimentary successions in the northern and eastern parts of the East European Platform, Lithol. Miner. Resour., 2021c, no. 1, pp. 1–23.

  72. Maslov, A.V. and Shevchenko, V.P., REE–Th systematics of the suspended particulate matter and bottom sediments from the mouth zones of the World rivers of different categories/classes and some large Russian Arctic rivers, Geochem. Int., 2019, vol. 64, no. 1, pp. 56–73.

    Article  Google Scholar 

  73. Maslov, A.V., Isherskaya, M.V., Ronkin, Yu.L., et al., Mudstone lithogeochemistry and formation conditions of Vendian deposits in the Shkapovo–Shikhan Basin, Lithol. Miner. Resour., 2006, no. 3, pp. 250–270.

  74. Maslov, A.V., Alekseev, V.P., and Fedorov, Yu.N., Verification of genetic reconstructions based on lithochemical indicators for the Tyumen Formation in the Shaim petroliferous region, in Puti realizatsii neftegazovogo i rudnogo potentsiala Khanty-Mansiiskogo avtonomnogo okruga-Yugry (Mechanisms for the Realization of the Petroleum and Ore Potential of the Khanty-Mansi Autonomous Region—Yugra), Khanty-Mansiisk: NATs RN, 2007a, vol. 1, pp. 246–253.

  75. Maslov, A.V., Krupenin, M.T., Petrov, G.A., et al., Some geochemical features and formation conditions of the fine-grained terrigenous rocks of the Serebryanka and Sylvitsa groups in the Middle Urals, Litosfera, 2007b, no. 2, pp. 3–28.

  76. Maslov, A.V., Mizens, G.A., Badida, L.V., et al., Litogeokhimiya terrigennykh assotsiatsii yuzhnykh vpadin Predural’skogo progiba (Lithogeochemistry of Terrigenous Associations in Southern Depressions in the Ural Foredeep), Yekaterinburg: IGG UrO RAN, 2015.

  77. Maslov, A.V., Kozina, N.V., Shevchenko, V.P., et al., REE systematics in modern bottom sediments of the Caspian Sea and river deltas worldwide: Experience of comparison, Dokl. Earth Sci., 2017, vol. 475, no. 2, pp. 795–802.

    Article  Google Scholar 

  78. Maslov A.V., Mizens G.A., Badida L.V., Krupenin M.T. Structural reconstruction of the Middle Uralian part of the Uralian orogen at the initial stage of its formation: Evidence from clay geochemistry, Geochem. Int., 2021, vol. 66, no. 5, pp. 522–527.

    Article  Google Scholar 

  79. Maulik, P.K., Chakraborty, C., Ghosh, P., and Rudra, D., Meso- and macro-scale architecture of a Triassic fluvial succession: Denwa formation, Satpura Gondwana basin, Madhya Pradesh, J. Geol. Soc. India, 2000, vol. 56, pp. 489–504.

    Google Scholar 

  80. McLennan, S.M., Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes, in Geochemistry and Mineralogy of Rare Earth Elements, Lipin, B.R., McKay, G.A., Eds., Rev. Mineral. Geochem., 1989, vol. 21, pp. 169–200.

    Google Scholar 

  81. McLennan, S.M., Taylor, S.R., McCulloch, M.T., and Maynard, J.B., Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations, Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 2015–2050.

    Article  Google Scholar 

  82. Mel’nichuk, O.Yu., Prodelta facies in the Late Devonian deltaic fan, eastern Middle Urals, in Problemy mineralogii, petrografii i metallogenii (Problems in Mineralogy, Petrography, and Metallogeny), Perm: PGNIU, 2016, issue 19, pp. 201–206.

  83. Mel’nichuk, O. Yu., Late Devonian deltaic system on the eastern slope of the Middle Urals, Vestn. Perm. Univ. Ser. Geol., 2018a, vol. 17, no. 1, pp. 18–32.

    Google Scholar 

  84. Mel’nichuk, O.Yu., The Famennian Ust-Kodinka Formation on the eastern slope of the Middle Urals: Facies-genetic reconstructions, Vestn. IG Komi NTs UrO RAN, 2018b, no. 3, pp. 8–16.

  85. Mel’nichuk, O.Yu. and Ryanskaya, A.D., Peculiarities of the lithological composition of mudstones of the Kodinka Formation (Upper Devonian, eastern Middle Urals), Litosfera. 2017, vol. 17, no. 3, pp. 71–86.

    Google Scholar 

  86. Naugol’nykh, S.V., Plants of the first land ecosystems, Vestn. RAN, 2019, vol. 89, no. 10, pp. 1052–1061.

    Google Scholar 

  87. Nesbitt, H.W., Mobility and fractionation of rare elements during weathering of a granodiorite, Nature, 1979, vol. 279, pp. 206–210.

    Article  Google Scholar 

  88. Nyakairu, G.W.A. and Koeberl, C., Mineralogical and chemical composition and distribution of rare earth elements in clay-rich sediments from Central Uganda, Geochem. J., 2001, vol. 35, pp. 13–28.

    Article  Google Scholar 

  89. Ohmoto, H., Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota, Geology, 1996, vol. 24, pp. 1135–1138.

    Article  Google Scholar 

  90. Okunlola, O.A. and Idowu, O., The geochemistry of claystone-shale deposits from the Maastritchian Patti formation, southern Bida basin, Nigeria, Earth Sci. Res. SJ, 2012, vol. 16, pp. 57– 67.

    Google Scholar 

  91. Olariu, C., Steel, R.J., and Petter, A.L., Delta front hyperpycnal bed geometry and implications for reservoir modeling: Cretaceous Panther Tongue delta, Book Cliffs, Utah, Am. Ass. Petrol. Geol. Bull., 2010, vol. 94, pp. 819–845.

    Google Scholar 

  92. Panahi, A. and Young, G.M., A geochemical investigation into the provenance of the Neoproterozoic Port Askaig Tillite, Dalradian Supergroup, western Scotland, Precambrian Res., 1997, vol. 85, pp. 81–96.

    Article  Google Scholar 

  93. Perri, F., Critelli, S., Mongelli, G., and Cullers, R.L., Sedimentary evolution of the Mesozoic continental redbeds using geochemical and mineralogical tools: the case of Upper Triassic to lowermost Jurassic Monte di Gioiosa mudrocks (Sicily, southern Italy), Int. J. Earth Sci. (Geol. Rundsch.), 2011, vol. 100, pp. 1569–1587.

    Google Scholar 

  94. Rainbird, R.H. and Young, G.M., Colossal rivers, massive mountains and supercontinents, Earth, 2009, vol. 54, pp. 52–61.

    Google Scholar 

  95. Ray, S. and Chakraborty, T., Lower Gondwana fluvial succession of the Pench-Kanhan valley, India: stratigraphic architecture and depositional controls, Sediment. Geol., 2002, vol. 151, pp. 243–271.

    Article  Google Scholar 

  96. Roddaz, M., Hermoza, W., Mora, A., et al., Cenozoic Sedimentary Evolution of the Amazonian Foreland Basin System, Amazonia, in Landscape and Species Evolution: A Look into the Past, Hoorn, C. and Wesselingh, F.P., Eds., Wiley-Blackwell Publ. Ltd, 2010, pp. 61–88.

    Google Scholar 

  97. Roddaz, M. and Christophoul, F., Burgos Zambrano, J.D., et al., Provenance of Late Oligocene to Quaternary sediments of the Ecuadorian Amazonian foreland basin as inferred from major and trace element geochemistry and Nd-Sr isotopic composition, J. South Am. Earth Sci., 2012, vol. 37, pp. 136–153.

    Article  Google Scholar 

  98. Ronov, A.B., General evolution trends in the composition of the Earth’s crust, ocean, and atmosphere, Geokhimiya, 1964, no. 8, pp. 715–743.

  99. Ronov, A.B., Evolution of the rock composition and geochemical processes in the Earth’s sedimentary shell, Geokhimiya, 1972, no. 2, pp. 137–147.

  100. Ronov, A.B., Stratisfera, ili osadochnaya obolochka Zemli (kolichestvennoe issledovanie) (Stratisphere or Sedimentary Shell of the Earth: Quantitative Determination), Moscow: Nauka, 1993.

  101. Santos, M.G.M. and Owen, G., Heterolithic meandering-channel deposits from the Neoproterozoic of NW Scotland: Implications for palaeogeographic reconstructions of Precambrian sedimentary environments, Precambrian Res., 2016, vol. 272, pp. 226–243.

    Article  Google Scholar 

  102. Santos, M.G.M., Mountney, N.P., and Peakall, J., Tectonic and environmental controls on Palaeozoic fluvial environments: reassessing the impacts of early land plants on sedimentation, J. Geol. Soc., 2016, vol. 174, pp. 393–404.

    Article  Google Scholar 

  103. Schoenborn, W.A. and Fedo, C.M., Provenance and paleoweathering reconstruction of the Neoproterozoic Johnnie Formation, southeastern California, Chem. Geol., 2011, vol. 285, pp. 231–255.

    Article  Google Scholar 

  104. Schumm, S.A., Speculations concerning the palaeo-hydraulic controls of terrestrial sedimentation, Geol. Soc. Am. Bull., 1968, vol. 79, pp. 1573–1588.

    Article  Google Scholar 

  105. Schwartzman, D.W. and Volk, T., Biotic enhancement of weathering and the habitability of earth, Nature, 1989, vol. 340, pp. 457–460.

    Article  Google Scholar 

  106. Snitko, G.P., Gai, V.V., Suslov, S.B., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 200 000. Seriya Permskaya. List O-40-KhI (Novovil’venskii). Ob"yasnitel’naya zapiska (State Geological Map of the Russian Federation, Scale 1 : 200 000, Ser. Perm, Sheet O-40-Khl (Novaya Vil’va), Explanatory Note), St. Petersburg: Kartogr. Fabr. VSEGEI, 2016.

  107. Song, Y., Liu, Z., Meng, Q., Wang, Y., et al., Petrography and geochemistry characteristics of the Lower Cretaceous Muling Formation from the Laoheishan Basin, Northeast China: implications for provenance and tectonic setting, Mineral. Petrol., 2017, vol. 111, pp. 383–397.

    Article  Google Scholar 

  108. Summa, C.L., Sedimentologic, stratigraphic, and tectonic controls of a mixed carbonate-siliciclastic succession: Neoproterozoic Johnnie Formation, southeast California, PhD Dissertation. Massachusetts: Inst.Techn., 1993.

  109. Talling, P.J., Masson, D.G., Sumner, E.J., and Malgesini, G., Subaqueous sediment density flows: depositional processes and deposit types, Sedimentology, 2012, vol. 59, pp. 1937–2003.

    Article  Google Scholar 

  110. Tao, H., Sun, S., Wang, Q., Yang, X., and Jiang, L., Petrography and geochemistry of Lower Carboniferous greywacke and mudstones in Northeast Junggar, China: Implications for provenance, source weathering, and tectonic setting, J. Asian Earth Sci., 2014, vol. 87, pp. 11–25.

    Article  Google Scholar 

  111. Taylor, S.R. and McLennan, S.M., The Continental Crust: Its composition and Evolution, Oxford: Blackwell, 1985.

    Google Scholar 

  112. Ugidos, J.M., Valladares, M.I., Recio, C., et al., Provenance of Upper Precambrian-Lower Cambrian shales in the Central Iberian Zone, Spain: evidence from a chemical and isotopic study, Chem. Geol., 1997, vol. 136, pp. 55–70.

    Article  Google Scholar 

  113. Valladares, M.I., Siliciclastic-carbonate slope apron in an immature tensional margin (Upper Precambrian-Lower Cambrian), Central Iberian Zone, Salamanca, Spain, Sediment. Geol., 1995, vol. 94, pp. 165–186.

    Article  Google Scholar 

  114. Vatrushkina, E.V., Verkhneyursko-nizhnemelovye osadochnye otlozheniya Zapadnoi Chukotki (Upper Jurassic–Lower Cretaceous Sedimentary Rocks in Western Chukotka), Moscow: GEOS, 2021.

  115. Vendskaya sistema. Istoriko-geologicheskoe i paleontologicheskoe obosnovanie (Vendian System: Historical-Geological and Paleontological Substantiation), Sokolov, B.S. and Fedonkin, M.A., Eds., Moscow: Nauka, 1985, vol. 2.

    Google Scholar 

  116. Verma, S.P. and Armstrong-Altrin, J.S., New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins, Chem. Geol., 2013, vol. 355, pp. 117–133.

    Article  Google Scholar 

  117. Vodolazskaya, V.P., Teterin, I.P., Kirillov, V.A., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1 000 000 (tret’e pokolenie). Seriya Ural’skaya. List O-40—Perm’. Ob"yasnitel’naya zapiska (State Geological Map of the Russian Federation, Scale 1 : 1 000 000 (3rd Generation), Ser. Ural, Sheet O-40-Perm, Explanatory Note), St. Petersburg: Kartogr. Fabr. VSEGEI, 2015.

  118. Winston, D., Fluvial systems of the Precambrian Belt Supergroup, Montana and Idaho, in Fluvial Sedimentology, Miall, A.D., Ed., Canad. Soc. Petrol. Geol. Mem. 1978. V. 5. P. 343–359.

    Google Scholar 

  119. Yan, Z., Wang, Z., Wang, T., et al., Provenance and tectonic setting of clastic deposits in the Devonian **cheng basin, Qinling orogen, Central China, J. Sediment. Res., 2006, vol. 76, pp. 557–574.

    Article  Google Scholar 

  120. Yan, Y., **a, B., Lin, G., et al., Geochemistry of the sedimentary rocks from the Nanxiong Basin, South China and implications for provenance, paleoenvironment and paleoclimate at the K/T boundary, Sediment. Geol., 2007, vol. 197, pp. 127–140.

    Article  Google Scholar 

  121. Yudovich, Ya.E. and Ketris, M.P., Osnovy litokhimii (Fundamentals of Lithochemistry), St. Petersburg: Nauka, 2000.

Download references

ACKNOWLEDGMENTS

The authors are sincerely grateful to reviewers for the attentive reading of the manuscript, benevolent criticism, and suggestions for its improvement. We paid great attention to their proposals for improving the methodology of further research. Some efforts are presented in the final section of the present paper so that they could be taken into account by researchers who may later continue our work in this field. We are also grateful to N.S. Glushkova for preparing illustrations for the paper.

Funding

This work was accomplished in accordance with State Tasks of the following institutes of the Russian Academy of Sciences: Zavaritsky Institute of Geology and Geochemistry, Yekaterinburg (project no. AAAA18-118053090044-1) and Geological Institute, Moscow (project no. 0135-2019-0043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Maslov or O. Yu. Melnichuk.

Additional information

Translated by D. Sakya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, A.V., Melnichuk, O.Y. Are There Restrictions Related to the Presence of Land Plants for Reconstructing Rivers of Different Categories?. Lithol Miner Resour 58, 60–83 (2023). https://doi.org/10.1134/S0024490223010054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490223010054

Keywords:

Navigation