Log in

Effects of Phosphorus Modifier and Support on the Properties of Palladium Catalysts in the Chemoselective Hydrogenation of Acetylenic Compounds

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Efficient heterogeneous catalysts for chemoselective hydrogenation of terminal and disubstituted alkynes and alkynols to monoenes based on Pd–P particles have been proposed. The influence of a zeolite support (Na-ZSM-5, MSM-41) and a phosphorus modifier on the properties of palladium catalysts in the semihydrogenation of acetylenic compounds is considered. Promotion with phosphorus increases the activity of palladium catalysts in hydrogenation of various acetylenic compounds 2.5- to 30-fold without reducing the selectivity for monoenes. The high selectivity for monoenes is determined by both thermodynamic and kinetic factors. The possibility of changing the ratio of the rates of hydrogenation of triple and double bonds by varying the nature of the solvent and the structural order of the catalyst particles was demonstrated using hydrogenation of acetylenic alcohols as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Johnston, S.K., Cherkasov, N., Pérez-Barrado, E., Aho, E., Murzin, D.Y., Ibhadon, D.Y., and Francesconi, M.G., Appl. Catal. A. Gen., 2017, vol. 544, p. 40.

    Article  CAS  Google Scholar 

  2. Vile G., Albani, D., Almora-Barrios, N., and Ramirez, J., ChemCatChem, 2016, vol. 8, p. 21.

    Article  CAS  Google Scholar 

  3. Denisova, E.A., Kostyukovich, A.Yu., Fakhrutdinov, A.N., Korabelnikova, V.A., Galushko, A.S., and Ananikov, V.P., ACS Catal., 2022, vol. 12, p. 6980.

    Article  CAS  Google Scholar 

  4. Li, Y., Yan, K., Cao, Y., Ge, X., Zhou, X., Yuan, W., Chen, D., and Duan, X., ACS Catal., 2022, vol. 12, p. 12138.

    Article  CAS  Google Scholar 

  5. Garcia-Ortiz, A., Vidal, J.D., Iborra, S., Climent, M.J., Cored, J., Ruano, D., Pérez-Dieste, V., Concepción, P., and Corma, P., J. Catal., 2020, vol. 389, p. 706.

    Article  CAS  Google Scholar 

  6. Gong, T., Huang, Y., Qin, L., Zhang, W., Li, J., Hui, L., and Feng, L., Appl. Surf. Sci., 2019, vol. 495, p. 143495.

    Article  CAS  Google Scholar 

  7. Rassolov, A.V., Bragina, G.O., Baeva, G.N., Mashkovsky, I.S., Smirnova, N.S., Gerasimov, E.Yu., Zubavichus, Y.V., and Stakheev, A.Y., Kinet. Catal., 2022, vol. 63, no. 6, p. 756.

    Article  CAS  Google Scholar 

  8. Liu, Y., McCue, A.J., and Li, D., ACS Catal., 2021, vol. 11, p. 9102.

    Article  CAS  Google Scholar 

  9. Albani, D., Shahrokhi, D., Chen, Z., Mitchell, Z., Hauert, Z., Lopez, N., and Perez-Ramirez, J., Nature Commun., 2018, vol. 9, p. 2634.

    Article  Google Scholar 

  10. Crespo-Quesada, M., Yarulin, A., **, M., **a, Y., and Kiwi-Minsker, Y., J. Am. Chem. Soc., 2011, vol. 133, p. 12787.

    Article  CAS  PubMed  Google Scholar 

  11. Belykh, L.B., Skripov, L.B., Sterenchuk, L.B., Gvozdovskaya, L.B., Sanzhieva, L.B., and Schmidt, F.K., J. Nanopart. Res., 2019, vol. 21, no. 9, p. 198.

    Article  Google Scholar 

  12. Skripov, N.I., Belykh, L.B., Sterenchuk, T.P., Gvozdovskaya, K.L., Zherdev, V.V., Dashabylova, T.M., and Schmidt, F.K., Kinet. Catal., 2020, vol. 61, no. 4, p. 575.

    Article  CAS  Google Scholar 

  13. Skripov, N.I., Belykh, L.B., Sterenchuk, T.P., Kornaukhova, T.A., Milenkaya, E.A., and Schmidt, F.K., Kinet. Catal., 2022, vol. 63, no. 2, p. 197.

    Article  CAS  Google Scholar 

  14. Belykh, L.B., Skripov, N.I., Sterenchuk, T.P., Akimov, V.V., Tauson, V.L., Savanovich, T.A., and Schmidt, F.K., Appl. Catal. A: Gen., 2020, vol. 589, p. 117293.

  15. Belykh, L.B., Skripov, N.I., Sterenchuk, T.P., Akimov, V.V., Tauson, V.L., Milenkaya, E.A., and Schmidt, F.K., Eur. J. Inorg. Chem., 2021, vol. 44, p. 4586.

    Article  Google Scholar 

  16. Gordon, A.J. and Ford, R.A., The Chemist’s Companion, New York: Wiley and Sons, 1972.

    Google Scholar 

  17. Matthews, J.C., Nashua, N.H., and Wood, L.L., US Patent 3474464, 1969.

  18. Zamalyutin, V.V., Katsman, E.A., Ryabov, A.V., Skryabina, M.A., Shpyneva, M.A., Danyushevsky, V.Y., and Flid, V.R., Kinet. Catal., 2022, vol. 63, no. 2, p. 234.

    Article  CAS  Google Scholar 

  19. Stakheev, A.Yu., Markov, P.V., Taranenko, A.S., Bragina, G.O., Baeva, G.N., Tkachenko, O.P., Mashkovskii, I.S., and Kashin, A.S, Kinet. Catal., 2015, vol. 56, no. 6.

  20. Al-Wadhaf, H.A., Catal. Ind., 2015, vol. 7, no. 3, p. 234.

    Article  Google Scholar 

  21. Zharmagambetova, A.K., Seitkalieva, K.S., Talgatov, E.T., Auezkhanova, A.S., Dzhardimalieva, G.I., and Pomogailo, G.I., Kinet. Catal., 2016, vol. 57, no. 3, p. 360.

    Article  CAS  Google Scholar 

  22. Mastalir, A., Kiraly, Z., and Berger, F., Appl. Catal. A: Gen., 2004, vol. 269, nos. 1–2, p. 161.

    Article  CAS  Google Scholar 

  23. Hamilton, C.A., Jackson, S.D., Kelly, G.J., Spence, G.J., and de Bruin, D., Appl. Catal. A: Gen., 2002, vol. 237, nos. 1–2, p. 201.

    Article  CAS  Google Scholar 

  24. Al-Wadhaf, H.A., Karpov, V.M., and Katsman, E.A., Catal. Commun., 2018, vol. 116, p. 67.

    Article  CAS  Google Scholar 

  25. Semagina, N., Grasemann, M., Xanthopoulos, N., Renken, A., and Kiwi-Minsker, A., J. Catal., 2007, vol. 251, no. 1, p. 213.

    Article  CAS  Google Scholar 

  26. Carenco, S., Leyva-Perez, A., Concepcion, P., Boissiere, C., Mezailles, N., Sanchez, C., and Corma, A., Nano Today, 2012, vol. 7, no. 1, p. 21.

    Article  CAS  Google Scholar 

  27. Liu, Y., McCue, A.J., Miao, C., Feng, J., Li, D., and Anderson, J.A., J. Catal., 2018, vol. 364, p. 406.

    Article  CAS  Google Scholar 

  28. Markov, P.V., Mashkovsky, I.S., Bragina, G.O., Warna, J., Gerasimov, E.Yu., Bukhtiyarov, V.I., Stakheev, A.Yu., and Murzin, D.Yu., Chem. Eng. J., 2019, vol. 358, p. 520.

    Article  CAS  Google Scholar 

  29. Belykh, L.B., Skripov, N.I., Sterenchuk, T.P., Akimov, V.V., Tauson, V.L., Likhatskii, M.N., Milen’kaya, E.A., Kornaukhova, T.A., and Shmidt, T.A., Kinet. Katal., 2023, no. 6, p. 749.

  30. Cherkasov, N., Ibhadon, A.O., McCue, A.O., Anderson, A.O., and Johnston, S.K., Appl. Catal. A: Gen., 2015, vol. 497, p. 22.

    Article  CAS  Google Scholar 

  31. Khoshkhoo, M.S., Scudino, S., Thomas, J., Gemming, T., Wendrock, H., and Eckert, J., Mater. Lett., 2013, vol. 108, p. 343.

    Article  Google Scholar 

Download references

Funding

The study was supported by the Ministry of Education and Science of Russia under the government contract (topic code: FZZE-2023-0006; agreement no. 075-03-2023-036). It was performed using the equipment of the Multiaccess Center of Analytical Equipment, Irkutsk State University (http://ckp-rf.ru/ckp/3264/); Multiaccess Center “Baikal Center for Nanotechnologies,” Irkutsk National Research Technical University (Tecnai G2 electron microscope); and Multiaccess Center for Isotope Geochemical Research (ELEMENT 2 high-resolution mass spectrometer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Belykh.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: DMF is N,N-dimethylformamide; Pd(acac)2, palladium bis- (acetylacetonate); PA, phenylacetylene; MBA, 2-methylbutan-2-ol; MBE, 2-methyl-3-buten-2-ol; MBY, 2‑methyl-3-butyn-2-ol; BYD, 2-butyne-1,4-diol; BED, 2‑butene-1,4-diol; Ssp, specific surface area; Vtot, total pore volume; Vmicrop, micropore volume; dav, average pore size; a.b., absorption band; ICP MS, inductively coupled plasma mass spectrometry; TEM, transmission electron microscopy; XRD, X-ray diffraction analysis; GLC, gas-liquid chromatography; BET, Brunauer–Emmett–Teller method; CSR, coherent scattering region; TOF, turnover frequency; a, catalytic activity based on total palladium; DTEM, dispersion determined from TEM data; MPd, atomic mass of Pd; APd, surface area of the Pd atom; ρ, density of palladium; NA, Avogadro number; dTEM, average surface particle diameter; ni, number of particles with a diameter di.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belykh, L.B., Sterenchuk, T.P., Skripov, N.I. et al. Effects of Phosphorus Modifier and Support on the Properties of Palladium Catalysts in the Chemoselective Hydrogenation of Acetylenic Compounds. Kinet Catal 65, 17–29 (2024). https://doi.org/10.1134/S0023158424010014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158424010014

Keywords:

Navigation