Log in

Effect of Stoichiometry and Method of Synthesis of Powdered Cu–Fe–Al Precursors on the Stability and Activity of CuFeAlO/CuFeAl Ceramometals in the High-Temperature Water Gas Shift Reaction

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The ceramometal CuFeAlO/CuFeAl catalysts obtained from various powdered Cu–Fe–Al precursors differing in stoichiometry and preparation method were characterized by physicochemical methods and studied in the water gas shift reaction (CO + H2O \( \rightleftarrows \) CO2 + H2). The catalysts were a monolith porous composite, in which metal particles were covered with an oxide shell. The sample with the atomic ratio Cu : Fe : Al = 45 : 22 : 33, synthesized from a powder precursor in two stages, was found to be the most stable. At the first stage, the mechanochemical melting of iron and copper powders was carried out, and the resulting product mixed with aluminum powder was mechanochemically treated at the second stage. This procedure made it possible to provide a more uniform distribution of components in the precursor. The ceramometal catalyst samples were studied before and after the reaction performed at 400°C using X-ray diffraction analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy. It was found that the catalysts most active at 350°С had reduced Cu1+ and Fe3+ sites after treatment in a reducing atmosphere. The least active catalysts were completely reduced to Cu0 and partially to Fe0. It was found that the activity in a temperature range of 330–400°C was determined not only by iron but also by copper active sites on the surface of the catalysts or by their combined action. Two-stage mechanical activation, apparently, led to a deeper chemical interaction of the Fe and Cu components to provide a higher activity of chromium-free CuFeAl ceramic metal catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Baraj, E., Ciahotný, K., and Hlinčík, T., Fuel, 2021, vol. 288, p. 119817.

    Article  CAS  Google Scholar 

  2. Zhu, M. and Wachs, I.E., ACS Catal., 2016, vol. 6, p. 722.

    Article  CAS  Google Scholar 

  3. Damma, D. and Smirniotis, P.G., Curr. Opin. Chem. Eng., 2018, vol. 21, p. 103.

    Article  Google Scholar 

  4. Khassin, A.A., Minyukova, T.P., Demeshkina, M.P., Baronskaya, N.A., Plyasova, L.M., Kustova, G.N., Zaikovskii, V.I., and Yur’eva, T.M., Kinet. Catal., 2009, vol. 50, no. 6, p. 837.

    Article  CAS  Google Scholar 

  5. Khassin, A.A., Minyukova, T.P., Plyasova, L.M., Filonenko, G.A., and Yurieva, T.M., Catalysts based on the nanodispersed metastable iron oxyhydroxide, 2-line ferrihydrite, Chapter 8, in Advances in Nanotechnology, Bartul, Z. and Trenor, J., Eds., Nova Publishers, 2010, vol. 2, p. 347. 

    Google Scholar 

  6. Zhu, M. and Wachs, I.E., Catal. Today, 2018, vol. 311, p. 2.

    Article  CAS  Google Scholar 

  7. Bao, Z., Ding, W., and Li, Q., Int. J. Hydrogen Energy, 2012, vol. 37, p. 951.

  8. Jeong, D.-W., Jha, A., Jang, W.-J., Han, W.-B., and Roh, H.-S., Chem. Eng. J., 2015, vol. 265, p. 100.

    Article  CAS  Google Scholar 

  9. Zhu, M., Yalçına, Ö., and Wachs, I.E., Appl. Catal., B, 2018, vol. 232, p. 205.

    Article  CAS  Google Scholar 

  10. Meshkani, F. and Rezaei, M., Renew. Eng., 2015, vol. 74, p. 588.

    Article  CAS  Google Scholar 

  11. Jeong, D.-W., Subramanian, V., Shim, J.-O., Jang, W.-J., Seo, Y.-C., Roh, H.-S., Gu, J.H., and Lim, Y.T., Catal. Lett., 2013, vol. 143, p. 438.

    Article  CAS  Google Scholar 

  12. Na, H.-S., Jeong, D.-W., Jang, W.-J., Shim, J.-O., and Roh, H.-S., Int. J. Hydrogen Energy, 2015, vol. 40, issue 36, p. 12268.

    Article  CAS  Google Scholar 

  13. Firsova, A.A., Morozova, O.S., Vorob’eva, G.A., Leonov, A.V., Kukharenko, A.I., Cholakh, S.O., Kurmaev, E.Z., and Korchak, V.N., Kinet. Catal., 2018, vol. 59, no. 2, p. 160.

    Article  CAS  Google Scholar 

  14. Morozova, O.S., Firsova, A.A., Tyulenin, Yu.P., Vorobieva, G.A., and Leonov, A.V., Kinet. Catal., 2020, vol. 61, no. 5, p. 824.

    Article  CAS  Google Scholar 

  15. Krasnyakova, T.V., Yurchilo, S.A., Morenko, V.V., Nosolev, I.K., Glazunova, E.V., Khasbulatov, S.V., Verbenko, I.A., and Mitchenko, S.A., Kinet. Catal., 2020, vol. 61, no. 3, p. 384.

    Article  CAS  Google Scholar 

  16. Palma, V., Ruocco, C., Cortese, M., and Martino, M., Catalysts, 2019, vol. 9, p. 991.

    Article  CAS  Google Scholar 

  17. Tikhov, S.F., Minyukova, T.P., Reshetnikov, S.I., Valeev, K.R., Vernikovskaya, N.V., Salanov, A.N., Cherepanova, S.V., and Sadykov, V.A., Chem. Eng. J., 2019, vol. 374, p. 405.

    Article  Google Scholar 

  18. Tikhov, S.F., Minyukova, T.P., Valeev, K.R., Cherepanova, S.V., Salanov, A.N., Bakina, O.V., Pervikov, A., Yakovlev, I.V., Lapina, O.B., and Sadykov, V.A., ACS Omega, 2020, vol. 5, p. 19928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tikhov, S.F., Minyukova, T.P., Valeev, K.R., Cherepanova, S.V., Saraev, A.A., Kaichev, V.V., Aidakov, E.E., Smorygo, O.L., Vazhnova, A.I., and Mikutski, V.A., Int. J. Hydrogen Energy, 2022.

  20. Tikhov, S.F., Minyukova, T.P., Valeev, K.R., Cherepanova, S.V., Salanov, A.N., Shtertser, N.V., and Sadykov, V.A., Mater. Chem. Phys., 2019, vol. 221, p. 349.

    Article  CAS  Google Scholar 

  21. Tikhov, S.F., Valeev, K.R., Cherepanova, S.V., Zaikovskii, V.I., Salanov, A.N., Sadykov, V.A., Dudina, D.V., Lomovsky, O.I., Petrov, S.A., Smorygo, O.L., and Gokhale, A., Materials, 2022, vol. 15, no. 6, p. 2087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaichev, V.V., Chesalov, Y.A., Saraev, A.A., and Tsapina, A.M., J. Phys. Chem. C, 2019, vol. 123, p. 19668.

    Article  CAS  Google Scholar 

  23. Dudina, D.V., Lomovsky, O.I., Valeev, K.R., Tikhov, S.F., Boldyreva, N.N., Salanov, A.N., Cherepanova, S.V., Zaikovskii, V.I., Andreev, A.S., Lapina, O.B., and Sadykov, V.A., J. Alloys Compd., 2015, vol. 629, p. 343.

    Article  CAS  Google Scholar 

  24. Fedorov, A.V., Saraev, A.A., Kremneva, A.M., Selivanova, A.V., Vorokhta, M., Smid, B., Bulavchenko, O.A., Yakovlev, V.A., and Kaichev, V.V., ChemCatChem, 2020, vol. 12, no. 19, p. 4911.

    Article  CAS  Google Scholar 

  25. McIntyre, N.S. and Zetaruk, D.G., Anal. Chem., 1977, vol. 49, p. 1521.

    Article  CAS  Google Scholar 

  26. Hou, M., Ma, L., Ma, H., and Yue, M., J. Mater. Sci., 2017, vol. 53, p. 1065.

    Article  Google Scholar 

  27. Ma, L., Ma, H., Han, D., Qiu, M., Guan, Y., and Hu, Y., Catalysts, 2018, vol. 8, p. 415.

    Article  Google Scholar 

  28. Ye, Y., Wang, L., Zhang, S., Zhu, Y., Shan, F., and Tao, F., Chem. Commun., 2013, vol. 49, p. 4385.

    Article  CAS  Google Scholar 

  29. Tikhov, S.F., Valeev, K.R., Salanov, A.N., Cherepanova, S.V., Boldyreva, N.N., Zaikovskii, V.I., Sadykov, V.A., Dudina, D.V., Lomovsky, O.I., Romanenkov, V.E., and Pyatsyushik, E.E., J. Alloy. Compd., 2018, vol. 736, p. 289.

    Article  CAS  Google Scholar 

  30. Kameoka, S., Tanabe, T., and Tsai, A.P., Appl. Catal., A, 2010, vol. 375, p. 16.

Download references

ACKNOWLEDGMENTS

The studies were carried out using equipment of the Shared-Use Center “National Center for the Study of Catalysts.”

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of a state contract of the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project no. АААА-А21-121011390054-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Tikhov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Abbreviations and notation: XRD, X-ray diffraction; XPS, X-ray photoelectron spectroscopy; SEM, scanning electron microscopy; MA, mechanochemical activation; HTT, hydrothermal treatment; CSR, coherent scattering region; BET, Brunauer–Emmett–Teller method; Eb, binding energy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhov, S.F., Valeev, K.R., Cherepanova, S.V. et al. Effect of Stoichiometry and Method of Synthesis of Powdered Cu–Fe–Al Precursors on the Stability and Activity of CuFeAlO/CuFeAl Ceramometals in the High-Temperature Water Gas Shift Reaction. Kinet Catal 64, 85–95 (2023). https://doi.org/10.1134/S002315842301010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315842301010X

Keywords:

Navigation