Log in

Fluorite-Like Phases Based on Barium and Rare-Earth Fluorides

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Optically transparent single-crystal blocks are prepared by the fusion of a barium fluoride charge with yttrium and erbium fluorides using sodium fluoride as a flux. The crystal structures were solved and composition of the following phases were determined: Na0.75Ba1.26Er1.99F9.24 (cubic crystal system, \(Fm\bar{3}m\) space group, a = 11.4192(4) Å), Na0.25BaY2.75F10.5 (cubic crystal system, \(Fm\bar{3}m\) space group, a = 11.4350(19) Å), Na0.05Ba0.9Y1.05F5 (orthorhombic crystal system, Cmmm space group, a = 5.7205(5) Å, b = 17.2348(11) Å, c = 5.7648 (4) Å).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

REFERENCES

  1. B. P. Sobolev. The Rare Earth Trifluorides. Part 1: The High-temperature Chemistry of the Rare Earth Trifluorides. Barcelona, Spain: Institut d′Estudis Catalans, 2000.

  2. V. A. Zverev, E. V. Krivopustova, and T. V. Tochilina. Opticheskie materialy (Optical Materials). St. Petersburg, Russia: ITMO, 2013. [In Russian]

  3. A. Kaminskii. Laser Crystals, Their Physics and Properties. Berlin, Germany: Springer, 1991.

  4. B. P. Sobolev. The Rare Earth Trifluorides. Part 2: The High-Temperature Chemistry of the Rare Earth Trifluorides. Barcelona, Spain: Institut d′Estudis Catalans, 2001.

  5. S. V. Kuznetsov, A. A. Alexandrov, and P. P. Fedorov. Optical fluoride nanoceramics. Inorg. Mater., 2021, 57(6), 555-578. https://doi.org/10.1134/s0020168521060078

    Article  CAS  Google Scholar 

  6. C. L. Woody and D. F. Anderson. Calorimetry using BaF2 with photosensitive wire chamber readout. Nucl. Instrum. Methods Phys. Res., Sect. A, 1988, 265(1/2), 291-300. https://doi.org/10.1016/0168-9002(88)91082-0

    Article  Google Scholar 

  7. K. Wisshak, F. Käppeler, and H. Müller. Prototype crystals for the Karlsruhe 4π barium fluoride detector. Nucl. Instrum. Methods Phys. Res., Sect. A, 1986, 251(1), 101-107. https://doi.org/10.1016/0168-9002(86)91155-1

    Article  Google Scholar 

  8. V. N. Makhov, M. A. Terekhin, M. Kirm, S. L. Molodtsov, and D. V. Vyalikh. A comparative study of photoemission and cross luminescence from BaF2. Nucl. Instrum. Methods Phys. Res., Sect. A, 2005, 537(1/2), 113-116. https://doi.org/10.1016/j.nima.2004.07.246

    Article  CAS  Google Scholar 

  9. K. Kamada, T. Nawata, Y. Inui, H. Yanagi, H. Sato, A. Yoshikawa, M. Nikl, and T. Fukuda. Czochralski growth of size BaF2 single crystal for a fast scintillator. Nucl. Instrum. Methods Phys. Res., Sect. A, 2005, 537(1/2), 159-162. https://doi.org/10.1016/j.nima.2004.07.257

    Article  CAS  Google Scholar 

  10. D. M. Seliverstov, A. A. Demidenko, E. A. Garibin, S. D. Gain, Y. I. Gusev, P. P. Fedorov, S. V. Kosyanenko, I. A. Mironov, V. V. Osiko, P. A. Rodnyi, A. N. Smirnov, and V. M. Suvorov. New fast scintillators on the base of BaF2 crystals with increased light yield of 0.9 ns luminescence for TOF PET. Nucl. Instrum. Methods Phys. Res., Sect. A, 2012, 695, 369-372. https://doi.org/10.1016/j.nima.2011.11.080

    Article  CAS  Google Scholar 

  11. A. A. Demidenko, E. A. Garibin, S. D. Gain, Y. I. Gusev, P. P. Fedorov, I. A. Mironov, S. B. Michrin, V. V. Osiko, P. A. Rodnyi, D. M. Seliverstov, and A. N. Smirnov. Scintillation parameters of BaF2 and BaF2:Ce3+ ceramics. Opt. Mater., 2010, 32(10), 1291-1293. https://doi.org/10.1016/j.optmat.2010.05.003

    Article  CAS  Google Scholar 

  12. J. Ladol, H. Khajuria, and H. N. Sheikh. BaLaF5, BaLaF5:Eu3+, BaLaF5:Eu3+/Tb3+ and BaLaF5:Eu3+@BaLaF5:Gd3+ core/shell nanoplates: Hydrothermal synthesis, luminescence and magnetic properties. J. Mater. Sci. Mater. Electron., 2016, 27(4), 4084-4092. https://doi.org/10.1007/s10854-015-4267-6

    Article  CAS  Google Scholar 

  13. X. Li, Z. Yi, Z. Xue, S. Zeng, and H. Liu. Multifunctional BaYbF5:Gd/Er upconversion nanoparticles for in vivo tri-modal upconversion optical, X-ray computed tomography and magnetic resonance imaging. Mater. Sci. Eng. C, 2017, 75, 510-516. https://doi.org/10.1016/j.msec.2017.02.085

    Article  CAS  PubMed  Google Scholar 

  14. S. L. Maurizio, G. Tessitore, K. W. Krämer, and J. A. Capobianco. BaYF5:Yb3+,Tm3+ Upconverting nanoparticles with improved population of the visible and near-infrared emitting states: Implications for bioimaging. ACS Appl. Nano Mater., 2021, 4(5), 5301-5308. https://doi.org/10.1021/acsanm.1c00652

    Article  CAS  Google Scholar 

  15. E. I. Madirov, V. A. Konyushkin, A. N. Nakladov, P. P. Fedorov, T. Bergfeldt, D. Busko, I. A. Howard, B. S. Richards, S. V. Kuznetsov, and A. Turshatov. An up-conversion luminophore with high quantum yield and brightness based on BaF2:Yb3+,Er3+ single crystals. J. Mater. Chem. C, 2021, 9(10), 3493-3503. https://doi.org/10.1039/d1tc00104c

    Article  CAS  Google Scholar 

  16. A. A. Volchek and S. V. Kuznetsov. Synthesis of solid solutions of barium fluoride with fluorides of rare earth elements and study of up-conversion properties. Russ. J. Inorg. Chem., 2023, 68(8), 1-6.

  17. A. A. Alexandrov, L. A. Petrova, D. V. Pominova, I. D. Romanishkin, M. V. Tsygankova, S. V. Kuznetsov, V. K. Ivanov, and P. P. Fedorov. Novel fluoride matrix for dual-range optical sensors and visualization. Appl. Sci., 2023, 13(18), 9999. https://doi.org/10.3390/app13189999

    Article  CAS  Google Scholar 

  18. K. Wapenaar, J. Vankoesveld, and J. Schoonman. Conductivity enhancement in fluorite-structured Ba1–xLaxF2+x solid solutions. Solid State Ionics, 1981, 2(3), 145-154. https://doi.org/10.1016/0167-2738(81)90172-7

    Article  CAS  Google Scholar 

  19. P. Fedorov, T. Turkina, B. Sobolev, E. Mariani, and M. Švantner. Ionic conductivity in the single crystals of non-stoichiometric fluorite phases M1–xRxF2+x (M = Ca, Sr, Ba; R = Y, La–Lu). Solid State Ionics, 1982, 6(4), 331-335. https://doi.org/10.1016/0167-2738(82)90018-2

    Article  CAS  Google Scholar 

  20. A. Ivanov-Shits. Specific features of ion transport in nonstoichiometric fluorite-type Ba1–xRxF2+x (R = La–Lu phases). Solid State Ionics, 1989, 31(4), 269-280. https://doi.org/10.1016/0167-2738(89)90466-9

    Article  CAS  Google Scholar 

  21. F. Preishuber-Pflügl, P. Bottke, V. Pregartner, B. Bitschnau, and M. Wilkening. Correlated fluorine diffusion and ionic conduction in the nanocrystalline F - solid electrolyte Ba0.6La0.4F2.419FT1() NMR relaxation vs. conductivity measurements. Phys. Chem. Chem. Phys., 2014, 16(20), 9580-9590. https://doi.org/10.1039/c4cp00422a

    Article  CAS  PubMed  Google Scholar 

  22. K. E. Rammutla, J. D. Comins, R. M. Erasmus, T. T. Netshisaulu, P. E. Ngoepe, A. V. Chadwick. Light scattering and computer simulation studies of superionic pure and La-doped BaF2. Chem. Phys., 2016, 467, 6-12. https://doi.org/10.1016/j.chemphys.2015.12.004

    Article  CAS  Google Scholar 

  23. V. I. Nikolaichik, B. P. Sobolev, N. I. Sorokin, and A. S. Avilov. Electron diffraction study and ionic conductivity of fluorite Ba1–xLaxF2+x and tysonite La1–yBayF3–y phases in the BaF2–LaF3 system. Solid State Ionics, 2022, 386, 116052. https://doi.org/10.1016/j.ssi.2022.116052

    Article  CAS  Google Scholar 

  24. A. K. Ivanov-Shits and I. V. Murin. Ionika tverdogo tela (Solid State Ionics). St. Petersburg, Russia: S.-Peterb. Gos. Univ., 2010. [In Russian]

  25. N. I. Sorokin and B. P. Sobolev. Nestekhiometricheskie ftoridy - tverdye elektrolity dlya elektrokhimicheskikh ustroistv (Nonstoichiometric fluorides are solid electrolytes for electrochemical devices). Kristallografiya, 2007, 52(5), 870-892. (In Russ.)

  26. A. A. Alexandrov, A. G. Bragina, N. I. Sorokin, V. V. Voronov, A. A. Luginina, S. V. Kuznetsov, V. K. Ivanov, and P. P. Fedorov. Low-temperature phase formation in the BaF2–LaF3 system. Inorg. Mater., 2023, 59(3), 295-305. https://doi.org/10.1134/S0020168523030019

    Article  CAS  Google Scholar 

  27. O. Greis and J. M. Haschke. Rare Earth Fluorides. In: Handbook on the Physics and Chemistry of Rare Earth / Eds. K. A. Gscheidner and L. Eyring. Elsevier B. V., 1982, 387-460. https://doi.org/10.1016/s0168-1273(82)05008-9

    Chapter  Google Scholar 

  28. B. P. Sobolev and N. L. Tkachenko. Phase diagrams of BaF2–(Y,Ln)F3 systems. J. Less Common Met., 1982, 85, 155-170. https://doi.org/10.1016/0022-5088(82)90067-4

    Article  CAS  Google Scholar 

  29. M. Kieser and O. Greis. Darstellung und Eigenschaften der Fluoritüberstrukturphasen Ba4SE3F17 mit SE = Ce–Nd, Sm–Lu und Y. Z. Anorg. Allg. Chem., 1980, 469(1), 164-171. https://doi.org/10.1002/zaac.19804690123

    Article  CAS  Google Scholar 

  30. O. Greis and M. Kieser. Electron diffraction from single crystals of Ba4Pr3F17, Ba4Nd3F17, Ba4Gd3F17 and Ba4Dy3F17. J. Less Common Met., 1980, 75(1), 119-123. https://doi.org/10.1016/0022-5088(80)90376-8

    Article  CAS  Google Scholar 

  31. M. Kieser and O. Greis. Preparation, thermal characterization and X-ray powder diffraction of Ba2REF7 superstructure phases (RE = Dy–Lu, Y). J. Less Common Met., 1980, 71(1), 63-69. https://doi.org/10.1016/0022-5088(80)90101-0

    Article  CAS  Google Scholar 

  32. B. A. Maximov, H. Solans, A. P. Dudka, E. A. Genkina, M. Badrdia-Font, I. I. Buchinskaya, A. A. Loshmanov, A. M. Golubev, V. I. Simonov, M. Font-Altaba, and B. P. Sobolev. Crystal structure of fluorite-based Ba4R3F17 (R = Y, Yb) phases. The ordering of cations and features of the anionic arrangement. Crystallogr. Rep., 1996, 41(1), 51-59.

  33. S. V. Kuznetsov, P. P. Fedorov, V. V. Voronov, K. S. Samarina, R. P. Ermakov, and V. V. Osiko. Synthesis of Ba4R3F17 (R stands for rare-earth elements) powders and transparent compacts on their base. Russ. J. Inorg. Chem., 2010, 55(4), 484-493. https://doi.org/10.1134/s0036023610040029

    Article  CAS  Google Scholar 

  34. P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, and V. V. Osiko. Nanofluorides. J. Fluor. Chem., 2011, 132(12), 1012-1039. https://doi.org/10.1016/j.jfluchem.2011.06.025

    Article  CAS  Google Scholar 

  35. P. P. Fedorov, S. V. Kuznetsov, M. N. Mayakova, V. V. Voronov, R. P. Ermakov, A. E. Baranchikov, and V. V. Osiko. Coprecipitation from aqueous solutions to prepare binary fluorides. Russ. J. Inorg. Chem., 2011, 56(10), 1525-1531. https://doi.org/10.1134/s003602361110007x

    Article  CAS  Google Scholar 

  36. P. P. Fedorov, M. N. Mayakova, S. V. Kuznetsov, V. V. Voronov, R. P. Ermakov, K. S. Samarina, A. I. Popov, and V. V. Osiko. Co-precipitation of yttrium and barium fluorides from aqueous solutions. Mater. Res. Bull., 2012, 47(7), 1794-1799. https://doi.org/10.1016/j.materresbull.2012.03.027

    Article  CAS  Google Scholar 

  37. P. P. Fedorov and A. A. Alexandrov. Synthesis of inorganic fluorides in molten salt fluxes and ionic liquid mediums. J. Fluor. Chem., 2019, 227, 109374. https://doi.org/10.1016/j.jfluchem.2019.109374

    Article  CAS  Google Scholar 

  38. P. Fedorov, M. Mayakova, A. Alexandrov, V. Voronov, S. Kuznetsov, A. Baranchikov, and V. Ivanov. The melt of sodium nitrate as a medium for the synthesis of fluorides. Inorganics, 2018, 6(2), 38. https://doi.org/10.3390/inorganics6020038

    Article  CAS  Google Scholar 

  39. L. R. Batsanova. Rare-earth fluorides. Russ. Chem. Rev., 1971, 40(6), 465-484. https://doi.org/10.1070/rc1971v040n06abeh001932

    Article  Google Scholar 

  40. L. R. Batsanova, A. K. Kupriyanova, and V. I. Doroshenko. Study of the interaction of the rare-earth nitrates with sodium fluorides in molten NaNO3. Inorg. Mater., 1971, 7, 1876/1877. [In Russian]

  41. P. P. Fedorov, A. A. Alexandrov, V. V. Voronov, M. N. Mayakova, A. E. Baranchikov, and V. K. Ivanov. Low-temperature phase formation in the SrF2–LaF3 system. J. Am. Ceram. Soc., 2021, 104(6), 2836-2848. https://doi.org/10.1111/jace.17666

    Article  CAS  Google Scholar 

  42. L. N. Pavlova, P. P. Fedorov, L. A. Ol’khovaya, D. D. Ikrami, and B. P. Sobolev. Ordering of heterovalent solid solution with the fluorte structure in the NaF-BaF2-GdF3 system. Crystallogr. Rep., 1993, 38(2), 221-224.

  43. S. Yonezawa, K. Jae-Ho, and M. Takashima. Pyrohydrolysis of rare-earth trifluorides in moist air. Solid State Sci., 2002, 4(11/12), 1481-1485. https://doi.org/10.1016/s1293-2558(02)00039-0

    Article  CAS  Google Scholar 

  44. CrysAlisPRO, Ver. 1.171.41.104a. Oxford, UK: Rigaku Oxford Diffraction, 2021.

  45. L. Palatinus and G. Chapuis. SUPERFLIP - a computer program for the solution of crystal structures by charge flip** in arbitrary dimensions. J. Appl. Crystallogr., 2007, 40(4), 786-790. https://doi.org/10.1107/s0021889807029238

    Article  CAS  Google Scholar 

  46. V. Petříček, L. Palatinus, J. Plášil, and M. Dušek. Jana2020 - a new version of the crystallographic computing system Jana. Z. Kristallogr. - Cryst. Mater., 2023, 238(7/8), 271-282. https://doi.org/10.1515/zkri-2023-0005

    Article  CAS  Google Scholar 

  47. J. W. Pierce and H. Y. P. Hong. Proc. Tenth Rare Earth Research Conference, Carefree, Arizona, April 30-May 3, 1973. Springfield, USA: USAEC Technical Information Center, 1973, 114.

  48. N. V. Podberezskaya, O. G. Potapova, S. V. Borisov, and Y. V. Gatilov. Crystal structure of KTb3F10 cubic packing of the [Tb6F32]14– polyanions. J. Struct. Chem., 1977, 17(5), 815-817. https://doi.org/10.1007/bf00746034

    Article  Google Scholar 

  49. A. Grzechnik, J. Nuss, Κ. Friese, J.-Y. Gesland, and M. Jansen. Refinement of the crystal structure of potassium triyttrium decafluoride, KY3F10. Z. Kristallogr. - New Cryst. Struct., 2002, 217(JG), 460. https://doi.org/10.1524/ncrs.2002.217.jg.460

    Article  CAS  Google Scholar 

  50. K. Friese, H. Krüger, V. Kahlenberg, T. Balić-Zunić, H. Emerich, J.-Y. Gesland, and A. Grzechnik. Study of the temperature dependence of the structure of KY3F10. J. Phys. Condens. Matter, 2006, 18(9), 2677-2687. https://doi.org/10.1088/0953-8984/18/9/007

    Article  CAS  Google Scholar 

  51. A. M. Golubev. Strukturnyi tip KY3F10 i blizkie emu po stroeniyu soedineniya s khimicheskimi svyazyami inoi prirody. (Structural type KY3F10 and compounds similar to it in structure with chemical bonds of a different nature). Koord. Khim., 1990, 16(4), 461-465. [In Russian]

  52. D. N. Karimov, I. I. Buchinskaya, N. A. Arkharova, A. G. Ivanova, A. G. Savelyev, N. I. Sorokin, and P. A. Popov. Growth peculiarities and properties of KR3F10 (R = Y, Tb) single crystals. Crystals, 2021, 11(3), 285. https://doi.org/10.3390/cryst11030285

    Article  CAS  Google Scholar 

  53. P. P. Fedorov. Systems of alcali and rare-earth metal fluorides. Russ. J. Inorg. Chem., 1999, 44(11), 1703-1727.

  54. E. I. Ardashnikova, M. P. Borzenkova, and A. V. Novoselova. Prevrashchenie v ryadakh dvoinykh ftoridov kaliya i RZE (Transformation in the series of double fluorides of potassium and rare earth elements). Zh. Neorg. Khim., 1980, 25, 1501-1505. [In Russian]

  55. A. Vedrine, R. Boutonnet, R. Sabatier, and J.-C. Cousseins. Les systemes RbF–SmF3 et CsF–SmF3. Bull. Soc. Chim. Fr., 1975, 3/4, 445-448.

  56. C. D. McMillen, S. Comer, K. Fulle, L. D. Sanjeewa, and J. W. Kolis. Crystal chemistry of hydrothermally grown ternary alkali rare earth fluorides. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater., 2015, 71(6), 768-776. https://doi.org/10.1107/s2052520615017916

    Article  CAS  Google Scholar 

  57. J. Metin, D. Avignant, D. Chatonier, and C. Cousseins. Etude cristallograchimique d′une serie de composes fluores de formule TlLn3F10. C.R. Acad. Sci., 1981, 292, 1379-1382.

  58. Z. J. Kang, Y. X. Wang, F. T. You, and J. H. Lin. Hydrothermal syntheses and crystal structure of NH4Ln3F10 (Ln = Dy, Ho, Y, Er, Tm). J. Solid State Chem., 2001, 158(2), 358-362. https://doi.org/10.1006/jssc.2001.9131

    Article  CAS  Google Scholar 

  59. F. V. Kalinchenko, M. P. Borzenkova, and A. V. Novoselova. Issledovanie tverdofaznogo vzaimodeistviya triftoridov sur'my i vismuta s ftoridami shchelochnykh metallov (Investigation of solid-state interaction of trifluorides of antimony and bismuth with fluorides of alkaline metals). Zh. Neorg. Khim., 1983, 28(9), 2354-2358. [In Russian]

  60. P. Valon, J. C. Cousseins, A. Védrine, J. C. Gâcon, G. Boulon, and F. K. Fong. Synthesis of ternary fluorides BaCaLn2F10 - Eu2+ luminescence in BaCaLu2F10. Mater. Res. Bull., 1976, 11(1), 43-48. https://doi.org/10.1016/0025-5408(76)90212-9

    Article  CAS  Google Scholar 

  61. P. Valon, J.C. Gacon, A. Vedrine, and B. Boulon. Analyse des sites de KLu3F10 et BaCaLu2F10 par spectroscopie de l′ion Eu3+. J. Solid State Chem., 1977, 21(4), 357-369. https://doi.org/10.1016/0022-4596(77)90133-5

    Article  CAS  Google Scholar 

  62. W. Liu, Q. Sun, M. Yan, Y. Song, X. Zhou, Y. Sheng, K. Zheng, and H. Zou. BaCaLu2F10:Ln3+ (Ln = Eu, Dy, Tb, Sm, Yb/Er, Yb/Ho) spheres: ionic liquid-based synthesis and luminescence properties. CrystEngComm, 2018, 20(40), 6173-6182. https://doi.org/10.1039/c8ce01080c

    Article  CAS  Google Scholar 

  63. M. Li, Y. Xu, G. Peng, J. Liu, S. Li, L. Han, and Z. Ci. Dual-mode temperature sensitive fluorescence phenomenon based on reconstruction of multi-level system in BaCaLu2F10 micro-nanocrystals. J. Alloys Compd., 2020, 820, 153190. https://doi.org/10.1016/j.jallcom.2019.153190

    Article  CAS  Google Scholar 

  64. D. J. M. Bevan, O. Greis, and J. Strähle. A new structural principle in anion-excess fluorite-related superlattices. Acta Crystallogr., Sect. A, 1980, 36(6), 889-890. https://doi.org/10.1107/s0567739480001878

    Article  Google Scholar 

  65. P. J. Bendall, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs. Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms. J. Solid State Chem., 1984, 51(2), 159-169. https://doi.org/10.1016/0022-4596(84)90329-3

    Article  CAS  Google Scholar 

  66. S. A. Kazanskii, A. I. Ryskin, A. E. Nikiforov, A. Y. Zaharov, M. Y. Ougrumov, and G. S. Shakurov. EPR spectra and crystal field of hexamer rare-earth clusters in fluorites. Phys. Rev. B, 2005, 72(1), 014127. https://doi.org/10.1103/physrevb.72.014127

    Article  Google Scholar 

  67. P. P. Fedorov. Association of point defects in non stoichiometric M1–xRxF2+x fluorite-type solid solutions. Butll. Soc. Catalana Cienc. Fis., Quim. Mat., 1991, 12(2), 349-381.

  68. T. N. Blanton and L. S. Hung. An X-ray diffraction study of Tm-doped BaYYbF8 thin films. Powder Diffr., 1996, 11(3), 204-208. https://doi.org/10.1017/s0885715600009131

    Article  CAS  Google Scholar 

  69. W. Nowacki, G. Beck, and W. Nowacki. Die Kristallstruktur des kubischen Yttriumfluorids YF3. Z. Kristallogr. - Cryst. Mater., 1939, 100(1-6), 242-250. https://doi.org/10.1524/zkri.1939.100.1.242

    Article  Google Scholar 

  70. C. Zhang, P. an Ma, C. Li, G. Li, S. Huang, D. Yang, M. Shang, X. Kang, and J. Lin. Controllable and white upconversion luminescence in BaYF5:Ln3+ (Ln = Yb, Er, Tm) nanocrystals. J. Mater. Chem., 2011, 21(3), 717-723. https://doi.org/10.1039/c0jm02948c

    Article  CAS  Google Scholar 

  71. L. Lei, D. Chen, F. Huang, Y. Yu, and Y. Wang. Syntheses and optical properties of monodisperse BaLnF5 (Ln = La–Lu, Y) nanocrystals. J. Alloys Compd., 2012, 540, 27-31. https://doi.org/10.1016/j.jallcom.2012.06.078

    Article  CAS  Google Scholar 

  72. Y. Lei, M. Pang, W. Fan, J. Feng, S. Song, S. Dang, and H. Zhang. Microwave-assisted synthesis of hydrophilic BaYF5:Tb/Ce,Tb green fluorescent colloid nanocrystals. Dalton Trans., 2011, 40(1), 142-145. https://doi.org/10.1039/c0dt00873g

    Article  CAS  PubMed  Google Scholar 

  73. M. Karbowiak and J. Cichos. Does BaYF5 nanocrystals exist? - The BaF2-YF3 solid solution revisited using photoluminescence spectroscopy. J. Alloys Compd., 2016, 673, 258-264. https://doi.org/10.1016/j.jallcom.2016.02.255

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (project No. 22-13-00167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Fedorov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 5, 126843.https://doi.org/10.26902/JSC_id126843

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, P.P., Volkov, S.V., Vaitieva, Y.A. et al. Fluorite-Like Phases Based on Barium and Rare-Earth Fluorides. J Struct Chem 65, 967–978 (2024). https://doi.org/10.1134/S002247662405010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247662405010X

Keywords

Navigation