Log in

Crystal Structure of the Cyano-Bridged Coordination Copper(I) Complex [Cu8(dpe)4(CN)8]·2dpe·H2O

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Cyano-bridged layered coordination polymer [Cu8(dpe)4(CN)8]·2dpe·H2O (1) is prepared by the hydrothermal reaction of CuCN and dpe (dpe = 1,2-di-4-pyridylethylene) in the presence of Cs3K[Re6S8(CN)6]·2H2O. The [Cu8(dpe)4(CN)8] complex is an isomer of the earlier described [Cu2(CN)2(dpe)] with a 3D framework structure. The structure of 1 is triclinic, \(P\bar{1}\) space group, a = 11.9229(8) Å, b = 11.9549(8) Å, c = 14.1984(10) Å, α = 102.019(2)°, β = 102.370(2)°, γ = 104.151(2)°, V = 1842.8(2) Å3, Z = 1, dcalc = 1.647 g/cm3. The Cu atoms in 1 have a triangular coordination environment formed by N atoms of the bridging dpe molecule and N and C atoms of the ambidentate bridging CN ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. T. Wen, X. Zhou, D. Zhang, and D. Li. Luminescent mechanochromic porous coordination polymers. Chem. - Eur. J., 2014, 20(3), 644-648. https://doi.org/10.1002/chem.201303991

    Article  CAS  Google Scholar 

  2. C.-Y. Gao, H.-R. Tian, J. Ai, L.-J. Li, S. Dang, Y.-Q. Lan, and Z.-M. Sun. A microporous Cu–MOF with optimized open metal sites and pore spaces for high gas storage and active chemical fixation of CO2. Chem. Commun., 2016, 52(74), 11147-11150. https://doi.org/10.1039/c6cc05845k

    Article  CAS  Google Scholar 

  3. C.-W. Zhao, J.-P. Ma, Q.-K. Liu, X.-R. Wang, Y. Liu, J. Yang, J.-S. Yang, and Y.-B. Dong. An in situ self-assembled Cu4I4–MOF-based mixed matrix membrane: A highly sensitive and selective naked-eye sensor for gaseous HCl. Chem. Commun., 2016, 52(30), 5238-5241. https://doi.org/10.1039/c6cc00189k

    Article  CAS  Google Scholar 

  4. D. Shi, R. Zheng, M. Sun, X. Cao, C. Sun, C. Cui, C. Liu, J. Zhao, and M. Du. Semiconductive copper(I)–organic frameworks for efficient light-driven hydrogen generation without additional photosensitizers and cocatalysts. Angew. Chem., Int. Ed., 2017, 56(46), 14637-14641. https://doi.org/10.1002/anie.201709869

    Article  CAS  Google Scholar 

  5. A. V. Ermolaev, A. I. Smolentsev, and Y. V. Mironov. Use of [Re6Q8(CN)6]4– (Q = S, Se, Te) cluster anions and Cu(I) cationic complexes with 2,2′-bipyridine for the construction of new cyano-bridged coordination compounds. Polyhedron, 2015, 102, 417-423. https://doi.org/10.1016/j.poly.2015.10.024

    Article  CAS  Google Scholar 

  6. A. V. Ermolaev and Y. V. Mironov. Synthesis, structure and characterizations of a series of frameworks constructed from octahedral rhenium(III) chalcocyanide clusters, copper(I) and organic units. Polyhedron, 2023, 231, 116266. https://doi.org/10.1016/j.poly.2022.116266

    Article  CAS  Google Scholar 

  7. N. G. Naumov, S. B. Artemkina, A. V. Virovets, and V. E. Fedorov. Adjustment of dimensionality in covalent frameworks formed by Co2+ and rhenium cluster chalcocyanide [Re6S8(CN)6]4–. Solid State Sci., 1999, 1(7/8), 473-481. https://doi.org/10.1016/s1293-2558(00)80100-4

    Article  CAS  Google Scholar 

  8. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. ActaCrystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  9. G. M. Sheldrick. Crystal structure refinement with SHELXL. ActaCrystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  10. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

  11. S. R. Batten, A. R. Harris, P. Jensen, K. S. Murray, and A. Ziebell. Copper(I) dicyanamide coordination polymers: ladders, sheets, layers, diamond-like networks and unusual interpenetration. J. Chem. Soc., Dalton Trans., 2000, (21), 3829-3836. https://doi.org/10.1039/b003527k

    Article  Google Scholar 

  12. D. J. Chesnut, D. Plewak, and J. Zubieta. Solid state coordination chemistry of the copper(I)–cyano–organodiimine system. Two- and three-dimensional copper cyanide phases incorporating linear dipodal ligands. J. Chem. Soc., Dalton Trans., 2001, (18), 2567-2580. https://doi.org/10.1039/b100390i

    Article  Google Scholar 

  13. M. S. Zavakhina, D. G. Samsonenko, A. V. Virovets, D. N. Dybtsev, and V. P. Fedin. Homochiral Cu(II) and Ni(II) malates with tunable structural features. J. Solid State Chem., 2014, 210(1), 125-129. https://doi.org/10.1016/j.jssc.2013.11.011

    Article  CAS  Google Scholar 

  14. D. De, S. Neogi, E. C. Sañudo, and P. K. Bharadwaj. Single-crystal to single-crystal linker substitution, linker place exchange, and transmetalation reactions in interpenetrated pillared–bilayer zinc(II) metal–organic frameworks. Chem. - Eur. J., 2015, 21(48), 17422-17429. https://doi.org/10.1002/chem.201502758

    Article  CAS  Google Scholar 

  15. J. H. Jo, H.-C. Kim, S. Huh, Y. Kim, and D. N. Lee. Antibacterial activities of Cu–MOFs containing glutarates and bipyridyl ligands. Dalton Trans., 2019, 48(23), 8084-8093. https://doi.org/10.1039/c9dt00791a

    Article  CAS  PubMed  Google Scholar 

  16. H. Kumagai, S. Kawata, and H. Nakano. Solid-state electrochemistry of copper(I) coordination polymers containing tetrafluoroborate anions. Inorg. Chem., 2019, 58(4), 2379-2385. https://doi.org/10.1021/acs.inorgchem.8b02768

    Article  CAS  PubMed  Google Scholar 

  17. S. D. Marks, K. Riascos-Rodriguez, R. R. Arrieta-Pérez, A. A. Yakovenko, J. Exley, P. G. Evans, and A. J. Hernández-Maldonado. Lattice expansion and ligand twist during CO2 adsorption in flexible Cu bipyridine metal-organic frameworks. J. Mater. Chem. A, 2020, 8(36), 18903-18915. https://doi.org/10.1039/d0ta03298k

    Article  CAS  Google Scholar 

  18. A. V. Ermolaev, A. I. Smolentsev, and Y. V. Mironov. Crystal structure of a new modification of the cyanide-bridged copper(I) coordination compound [CuCN(bpy)]n. J. Struct. Chem., 2014, 55(4), 731-733. https://doi.org/10.1134/s0022476614040210

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Ministry of Science and Higher Education of the Russian Federation (project No. 121031700321-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ermolaev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 4, 125376.https://doi.org/10.26902/JSC_id125376

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermolaev, A.V., Sukhikh, T.S. & Mironov, Y.V. Crystal Structure of the Cyano-Bridged Coordination Copper(I) Complex [Cu8(dpe)4(CN)8]·2dpe·H2O. J Struct Chem 65, 771–775 (2024). https://doi.org/10.1134/S0022476624040127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624040127

Keywords

Navigation