Log in

INFLUENCE OF HYDRATION AND THE SIZE OF THE MACROCYCLE OF NATIVE CYCLODEXTRINS ON THE SOLID PHASE INCLUSION OF RITONAVIR

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

We study how the size of the macrocycle of native cyclodextrins and their hydration influence the inclusion of ritonavir under mechanical grinding conditions. A procedure is proposed to estimate the degree of inclusion of ritonavir by cyclodextrins using the crystallization of the unincluded guest in the grinding products at the water vapor treatment. Ritonavir is almost completely included by anhydrous α-, β-, and γ-cyclodextrins, resulting in the formation of inclusion compounds. The structure–property relationship between ritonavir inclusion in cyclodextrin hydrates and the size of the host macrocycle is nonlinear. Ritonavir is completely included by saturated β-cyclodextrin hydrate and intermediate γ-cyclodextrin hydrates. The degree of ritonavir inclusion by saturated hydrates of α-cyclodextrin and particularly of γ-cyclodextrin is small due to the competition of this guest with water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. N. Morin-Crini, S. Fourmentin, É. Fenyvesi, E. Lichtfouse, G. Torri, M. Fourmentin, and G. Crini. 130 Years of cyclodextrin discovery for health, food, agriculture, and the industry: A review. Environ. Chem. Lett., 2021, 19, 2581-2617. https://doi.org/10.1007/s10311-020-01156-w

    Article  CAS  Google Scholar 

  2. Z. **ao, Y. Zhang, Y. Niu, Q. Ke, and X. Kou. Cyclodextrins as carriers for volatile aroma compounds: A review. Carbohydr. Polym., 2021, 269, 118292. https://doi.org/10.1016/j.carbpol.2021.118292

    Article  CAS  PubMed  Google Scholar 

  3. L. Ferreira, F. Mascarenhas-Melo, S. Rabaça, A. Mathur, A. Sharma, P. S. Giram, K. D. Pawar, A. Rahdar, F. Raza, F. Veiga, P. G. Mazzola, and A. C. Paiva-Santos. Cyclodextrin-based dermatological formulations: Dermopharmaceutical and cosmetic applications. Colloids Surf., B, 2023, 221, 113012. https://doi.org/10.1016/j.colsurfb.2022.113012

    Article  CAS  PubMed  Google Scholar 

  4. A. A. Skuredina, A. S. Tychinina, I. M. Le-Deygen, S. A. Golyshev, T. Y. Kopnova, N. T. Le, N. G. Belogurova, and E. V. Kudryashova. Cyclodextrins and their polymers affect the lipid membrane permeability and increase levofloxacin′s antibacterial activity in vitro. Polymers, 2022, 14(21), 4476. https://doi.org/10.3390/polym14214476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. P. Dhiman and M. Bhatia. Pharmaceutical applications of cyclodextrins and their derivatives. J. Inclusion Phenom. Macrocycl. Chem., 2020, 98, 171. https://doi.org/10.1007/s10847-020-01029-3

    Article  CAS  Google Scholar 

  6. P. Jansook, N. Ogawa, and T. Loftsson. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int. J. Pharm., 2018, 535, 272. https://doi.org/10.1016/j.ijpharm.2017.11.018

    Article  CAS  PubMed  Google Scholar 

  7. I. Puskás, L. Szente, L. Szőcs, and É. Fenyvesi. Cyclodextrins: Structure, physicochemical properties and pharmaceutical applications. Period. Polytech., Chem. Eng., 2023, 67, 11. https://doi.org/10.1016/j.ijpharm.2017.11.018

    Article  CAS  PubMed  Google Scholar 

  8. M. Jug and P. Mura. Grinding as solvent-free green chemistry approach for cyclodextrin inclusion complex preparation in the solid state. Pharmaceutics, 2018, 10, 189. https://doi.org/10.3390/pharmaceutics10040189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. C. Paiva-Santos, L. Ferreira, D. Peixoto, F. Silva, M. J. Soares, M. Zeinali, H. Zafar, F. Mascarenhas-Melo, F. Raza, P. G. Mazzola, and F. Veiga. Cyclodextrins as an inclusion molecular strategy for volatile organic compounds - Pharmaceutical applications. Colloids Surf., B, 2022, 218. https://doi.org/10.1016/j.colsurfb.2022.112758

    Article  CAS  PubMed  Google Scholar 

  10. N. Guembe-Michel, A. Durán, R. Sirera, and G. González-Gaitano. Solvent-free formation of cyclodextrin-based pseudopolyrotaxanes of polyethylene glycol: Kinetic and structural aspects. Int. J. Mol. Sci., 2022, 23, 685. https://doi.org/10.3390/ijms23020685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. H. Yoshii, T. Furuta, A. Yasunishi, and H. Hirano. Minimum number of water molecules required for inclusion of d-limonene in the cyclodextrin cavity. J. Biochem., 1994, 115, 1035. https://doi.org/10.1093/oxfordjournals.jbchem.a124452

    Article  CAS  PubMed  Google Scholar 

  12. N. Ogawa, C. Takahashi, and H. Yamamoto. Physicochemical characterization of cyclodextrin–drug interactions in the solid state and the effect of water on these interactions. J. Pharm. Sci., 2015, 104, 942. https://doi.org/10.1002/jps.24319

    Article  CAS  PubMed  Google Scholar 

  13. V. V. Gorbatchuk, A. K. Gatiatulin, M. A. Ziganshin, A. T. Gubaidullin, and L. S. Yakimova. Unusually high efficiency of β-cyclodextrin clathrate preparation by water-free solid-phase guest exchange. J. Phys. Chem., B, 2013, 117, 14544. https://doi.org/10.1021/jp408059b

    Article  CAS  PubMed  Google Scholar 

  14. A. K. Gatiatulin, V. Y. Osel′skaya, M. A. Ziganshin, and V. V. Gorbatchuk. Smart control of guest inclusion by α-cyclodextrin using its hydration history. RSC Adv., 2019, 9, 37778. https://doi.org/10.1039/C9RA08710A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. V. Y. Osel′skaya, A. K. Gatiatulin, A. E. Klimovitskii, M. A. Ziganshin, and V. V. Gorbatchuk. Competing role of water in inclusion of indomethacin and volatile organic compounds by native cyclodextrins. Macroheterocycles, 2022, 15, 174. https://doi.org/10.6060/mhc224319g

    Article  Google Scholar 

  16. P. J. Salústio, G. Feio, J. L. Figueirinhas, J. F. Pinto, and H. M. Cabral Marques. The influence of the preparation methods on the inclusion of model drugs in a β-cyclodextrin cavity. Eur. J. Pharm. Biopharm., 2009, 71, 377. https://doi.org/10.1016/j.ejpb.2008.09.027

    Article  CAS  PubMed  Google Scholar 

  17. S. Pereva, T. Sarafska, S. Bogdanova, and T. Spassov. Efficiency of «cyclodextrin-ibuprofen» inclusion complex formation. J. Drug Delivery Sci. Technol., 2016, 35, 34-39. https://doi.org/10.1016/j.jddst.2016.04.006

    Article  CAS  Google Scholar 

  18. S. Pereva, T. Sarafska, V. Petrov, S. Angelova, and T. Spassov. Inclusion complexes of (S)-naproxen and native cyclodextrins: Supramolecular structure and stability. J. Mol. Struct., 2021, 1235, 130218. https://doi.org/10.1016/j.molstruc.2021.130218

    Article  CAS  Google Scholar 

  19. Y. Inoue, M. Shigematsu, T. Komatsu, T. Oguchi, F. J. Arce, and G. L. See. Preparation and spectroscopic characterization of inclusion complexes of 3D ball-milled rifampicin with β-cyclodextrin and γ-cyclodextrin: 3D ball-milled rifampicin with β-cyclodextrin and γ-cyclodextrin. AAPS PharmSciTech, 2022, 23, 1. https://doi.org/10.1208/s12249-022-02290-0

    Article  CAS  PubMed  Google Scholar 

  20. N. A. Adhage and P. R. Vavia. β-Cyclodextrin inclusion complexation by milling. Pharm. Pharmacol. Commun., 2000, 6, 13. https://doi.org/10.1211/146080800128735412

    Article  CAS  Google Scholar 

  21. X. Yao, R. F. Henry, and G. G. Z. Zhang. Ritonavir form III: A new polymorph after 24 years. J. Pharm. Sci., 2023, 112, 237. https://doi.org/10.1016/j.xphs.2022.09.026

    Article  CAS  PubMed  Google Scholar 

  22. D. Law, S. L. Krill, E. A. Schmitt, J. J. Fort, Y. Qiu, W. Wang, and W. R. Porter. Physicochemical considerations in the preparation of amorphous ritonavir-poly(ethylene glycol) 8000 solid dispersions. J. Pharm. Sci., 2001, 90, 1015. https://doi.org/10.1002/jps.1054

    Article  CAS  PubMed  Google Scholar 

  23. L. Rinaldi, A. Binello, A. Stolle, M. Curini, and G. Cravotto. Efficient mechanochemical complexation of various steroid compounds with α-, β- and γ-cyclodextrin. Steroids, 2015, 98, 58. https://doi.org/10.1016/j.steroids.2015.02.016

    Article  CAS  PubMed  Google Scholar 

  24. D. (Alan) Zhu, G. Zografi, P. Gao, Y. Gong, and G. G. Z. Zhang. Modeling physical stability of amorphous solids based on temperature and moisture stresses. J. Pharm. Sci., 2016, 105, 2932. https://doi.org/10.1016/j.xphs.2016.03.029

    Article  CAS  PubMed  Google Scholar 

  25. C. Wang, I. Rosbottom, T. D. Turner, S. Laing, A. G. P. Maloney, A. Y. Sheikh, R. Docherty, Q. Yin, and K. J. Roberts. Molecular, solid-state and surface structures of the conformational polymorphic forms of ritonavir in relation to their physicochemical properties. Pharm. Res., 2021, 38, 971. https://doi.org/10.1007/s11095-021-03048-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. A. K. Gatiatulin, V. Y. Osel′skaya, M. A. Ziganshin, and V. V. Gorbatchuk. Size exclusion effect in binary inclusion compounds of α-cyclodextrin. Phys. Chem. Chem. Phys., 2018, 20, 26105. https://doi.org/10.1039/C8CP03104E

    Article  CAS  PubMed  Google Scholar 

  27. S. J. Dengale, O. P. Ranjan, S. S. Hussen, B. S. M. Krishna, P. B. Musmade, G. Gautham Shenoy, and K. Bhat. Preparation and characterization of co-amorphous ritonavir-indomethacin systems by solvent evaporation technique: Improved dissolution behavior and physical stability without evidence of intermolecular interactions. Eur. J. Pharm. Sci., 2014, 62, 57. https://doi.org/10.1016/j.ejps.2014.05.015

    Article  CAS  PubMed  Google Scholar 

  28. A. K. Gatiatulin, V. Y. Osel′skaya, M. A. Ziganshin, and V. V. Gorbatchuk. Preparation of γ-cyclodextrin inclusion compounds using solid-phase guest exchange method. Russ. J. Gen. Chem., 2022, 92, 1257. https://doi.org/10.1134/S1070363222070131

    Article  CAS  Google Scholar 

  29. K. Harata. The structure of the cyclodextrin complex. XX. Crystal structure of uncomplexed hydrated γ-cyclodextrin. Bull. Chem. Soc. Jpn., 1987, 60, 2763. https://doi.org/10.1246/bcsj.60.2763

    Article  CAS  Google Scholar 

  30. T. Steiner and W. Saenger. Channel-type crystal packing in the very rare space group P4212 with Z′ = 3/4: crystal structure of the complex γ-cyclodextrin-methanol-n-hydrate. Acta Crystallogr., Sect. B: Struct. Sci., 1998, 54, 450. https://doi.org/10.1107/S0108768197014547

    Article  Google Scholar 

  31. A. I. Vicatos and M. R. Caira. Cyclodextrin complexes of the anticonvulsant agent valproic acid. CrystEngComm, 2021, 23, 6582. https://doi.org/10.1039/D1CE01024G

    Article  CAS  Google Scholar 

  32. A. Azzali, S. d′Agostino, and F. Grepioni. Tuning the solubility of the herbicide bentazon: from salt to neutral and to inclusion complexes. ACS Sustain. Chem. Eng., 2021, 9, 12530. https://doi.org/10.1021/acssuschemeng.1c02749

    Article  CAS  Google Scholar 

  33. L. Catenacci, M. Sorrenti, M. C. Bonferoni, L. Hunt, and M. R. Caira. Inclusion of the phytoalexin trans-resveratrol in native cyclodextrins: A thermal, spectroscopic, and X-ray structural study. Molecules, 2020, 25, 998. https://doi.org/10.3390/molecules25040998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. K. A. Udachin, L. D. Wilson, and J. A. Ripmeester. Solid polyrotaxanes of polyethylene glycol and cyclodextrins: The single crystal X-ray structure of PEG-β-cyclodextrin. J. Am. Chem. Soc., 2000, 122, 12375. https://doi.org/10.1021/ja002189k

    Article  CAS  Google Scholar 

  35. A. I. Vicatos, Z. Hoossen, and M. R. Caira. Inclusion complexes of the steroid hormones 17β-estradiol and progesterone with β- and γ-cyclodextrin hosts: syntheses, X-ray structures, thermal analyses and API solubility enhancements. Beilstein J. Org. Chem., 2022, 18, 1749. https://doi.org/10.3762/bjoc.18.184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. H. Bai, J. Wang, C. U. Phan, Q. Chen, X. Hu, G. Shao, J. Zhou, L. Lai, and G. Tang. Cyclodextrin-based host-guest complexes loaded with regorafenib for colorectal cancer treatment. Nat. Commun., 2021, 12, 1. https://doi.org/10.1038/s41467-021-21071-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Z. Liu, A. Samanta, J. Lei, J. Sun, Y. Wang, and J. F. Stoddart. Cation-dependent gold recovery with α-cyclodextrin facilitated by second-sphere coordination. J. Am. Chem. Soc., 2016, 138, 11643. https://doi.org/10.1021/jacs.6b04986

    Article  CAS  PubMed  Google Scholar 

  38. M. A. Moussawi, N. Leclerc-Laronze, S. Floquet, P. A. Abramov, M. N. Sokolov, S. Cordier, A. Ponchel, E. Monflier, H. Bricout, D. Landy, M. Haouas, J. Marrot, and E. Cadot. Polyoxometalate, cationic cluster, and γ-cyclodextrin: from primary interactions to supramolecular hybrid materials. J. Am. Chem. Soc., 2017, 139, 12793. https://doi.org/10.1021/jacs.7b07317

    Article  CAS  PubMed  Google Scholar 

  39. A. A. Ivanov, M. Haouas, D. V. Evtushok, T. N. Pozmogova, T. S. Golubeva, Y. Molard, S. Cordier, C. Falaise, E. Cadot, and M. A. Shestopalov. Stabilization of octahedral metal halide clusters by host-guest complexation with γ-cyclodextrin: toward nontoxic luminescent compounds. Inorg. Chem., 2022, 61, 14462. https://doi.org/10.1021/acs.inorgchem.2c02468

    Article  CAS  PubMed  Google Scholar 

  40. W. Saenger, J. Jacob, K. Gessler, T. Steiner, D. Hoffmann, H. Sanbe, K. Koizumi, S. M. Smith, and T. Takaha. Structures of the common cyclodextrins and their larger analogues - beyond the doughnut. Chem. Rev., 1998, 98, 1787. https://doi.org/10.1021/cr9700181

    Article  CAS  PubMed  Google Scholar 

  41. G. Bettinetti, C. Novák, and M. Sorrenti. Thermal and structural characterization of commercial α-, β-, and γ-cyclodextrins. J. Therm. Anal. Calorim., 2002, 68, 517. https://doi.org/10.1023/A:1016043920156

    Article  CAS  Google Scholar 

  42. I. M. Le-Deygen, A. A. Skuredina, I. V. Uporov, and E. V. Kudryashova. Thermodynamics and molecular insight in guest-host complexes of fluoroquinolones with β-cyclodextrin derivatives, as revealed by ATR-FTIR spectroscopy and molecular modeling experiments. Anal. Bioanal. Chem., 2017, 409, 6451. https://doi.org/10.1007/s00216-017-0590-5

    Article  CAS  PubMed  Google Scholar 

  43. A. A. Skuredina, I. M. Le-Deygen, I. V. Uporov, and E. V. Kudryashova. A study of the physicochemical properties and structure of moxifloxacin complex with methyl-β-cyclodextrin. Colloid J., 2017, 79, 668. https://doi.org/10.1134/S1061933X17050143

    Article  CAS  Google Scholar 

  44. A. B. Setianto, Y. P. Nugraha, V. Suendo, A. Ainurofiq, H. Uekusa, and S. N. Soewandhi. X-ray diffraction and vibrational spectroscopic studies of the intermolecular interactions on the grinding and compaction behaviours of lopinavir and ritonavir crystals. Acta Pol. Pharm. - Drug Res., 2020, 77, 259. https://doi.org/10.32383/APPDR/116562

    Article  CAS  Google Scholar 

  45. N. S. Trasi, S. Bhujbal, Q. T. Zhou, and L. S. Taylor. Amorphous solid dispersion formation via solvent granulation - A case study with ritonavir and lopinavir. Int. J. Pharm. X, 2019, 1, 100035. https://doi.org/10.1016/j.ijpx.2019.100035

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by a State subsidy for Kazan (Volga Region) Federal University aimed at increasing its competitive ability among the leading scientific and educational centers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Gorbachuk.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 9, 116973.https://doi.org/10.26902/JSC_id116973

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatiatulin, A.K., Oselskaya, V.Y., Klimovitskii, A.E. et al. INFLUENCE OF HYDRATION AND THE SIZE OF THE MACROCYCLE OF NATIVE CYCLODEXTRINS ON THE SOLID PHASE INCLUSION OF RITONAVIR. J Struct Chem 64, 1702–1714 (2023). https://doi.org/10.1134/S0022476623090135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623090135

Keywords

Navigation