Log in

STRUCTURAL ISOMERS AND VIBRATIONAL SPECTRUM OF TETRAFLUOROSUBSTITUTED ZINC PHTHALOCYANINE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Structural parameters and relative Gibbs free energies are calculated by density functional theory methods for four tetrafluoro derivatives of zinc(II) phthalocyanine with substituents in non-peripheral positions. It is established that the least symmetrical isomer exhibits the highest thermodynamic stability under standard conditions. It is shown that the experimental IR spectrum of the studied compound contains contributions from the IR spectra of the corresponding isomers; a theoretical approach for the spectrum simulation is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. G. Guillaud, J. Simon, and J. P. Germain. Coord. Chem. Rev., 1998, 178-180, 1433. https://doi.org/10.1016/S0010-8545(98)00177-5

    Article  CAS  Google Scholar 

  2. G. de , P. Vázquez, F. Agulló-López, and T. Torres. Chem. Rev., 2004, 104, 3723. https://doi.org/10.1021/cr030206t

    Article  CAS  PubMed  Google Scholar 

  3. G. de , C. G. Claessens, and T. Torres. Chem. Commun., 2007, 2000. https://doi.org/10.1039/B614234F

    Article  Google Scholar 

  4. S. Campidelli, B. Ballesteros, A. Filoramo, D. D. Díaz, G. de , T. Torres, G. M. A. Rahman, C. Ehli, D. Kiessling, F. Werner, V. Sgobba, D. M. Guldi, C. Cioffi, M. Prato, and J.-P. Bourgoin. J. Am. Chem. Soc., 2008, 130, 11503. https://doi.org/10.1021/ja8033262

    Article  CAS  PubMed  Google Scholar 

  5. C. G. Claessens, U. Hahn, and T. Torres. Chem. Rec., 2008, 8, 75. https://doi.org/10.1002/tcr.20139

    Article  CAS  Google Scholar 

  6. G. Bottari, G. de , D. M. Guldi, and T. Torres. Chem. Rev. 2010, 110, 6768. https://doi.org/10.1021/cr900254z

    Article  CAS  PubMed  Google Scholar 

  7. M.-S. Liao and S. Scheiner. J. Chem. Phys., 2001, 114, 9780. https://doi.org/10.1063/1.1367374

    Article  CAS  Google Scholar 

  8. M. Schwarze, W. Tress, B. Beyer, F. Gao, R. Scholz, C. Poelking, K. Ortstein, A.A. Günther, D. Kasemann, D. Andrienko, and K. Leo. Science, 2016, 352, 1446. https://doi.org/10.1126/science.aaf0590

    Article  CAS  PubMed  Google Scholar 

  9. H. Lu and N. Kobayashi. Chem. Rev., 2016, 116, 6184. https://doi.org/10.1021/acs.chemrev.5b00588

    Article  CAS  PubMed  Google Scholar 

  10. A. G. Martynov, E. A. Safonova, A. Yu. Tsivadze, and Y. G. Gorbunova. Coord. Chem. Rev., 2019, 387, 325. https://doi.org/10.1016/j.ccr.2019.02.004

    Article  CAS  Google Scholar 

  11. A. G. Martynov, J. Mack, A. K. May, T. Nyokong, Y. G. Gorbunova, and A. Y. Tsivadze. ACS Omega, 2019, 4, 7265. https://doi.org/10.1021/acsomega.8b03500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. T. Mayer, U. Weiler, C. Kelting, D. Schlettwein, S. Makarov, D. Wöhrle, O. Abdallah, M. Kunst, and W. Jaegermann. Sol. Energy Mater. Sol. Cells, 2007, 91, 1873. https://doi.org/10.1016/j.solmat.2007.07.004

    Article  CAS  Google Scholar 

  13. H. Jiang, P. Hu, J. Ye, Y. Li, H. Li, X. Zhang, R. Li, H. Dong, W. Hu, and C. Kloc. Adv. Mater., 2017, 29, 1605053. https://doi.org/10.1002/adma.201605053

    Article  CAS  Google Scholar 

  14. D. Klyamer, A. Sukhikh, S. Gromilov, P. Krasnov, and T. Basova. Sensors, 2018, 18, 2141. https://doi.org/10.3390/s18072141

    Article  CAS  PubMed Central  Google Scholar 

  15. D. D. Klyamer, T. V. Basova, P. O. Krasnov, and A. S. Sukhikh. J. Mol. Struct., 2019, 1189, 73. https://doi.org/10.1016/j.molstruc.2019.04.032

    Article  CAS  Google Scholar 

  16. D. Bonegardt, D. Klyamer, P. Krasnov, A. Sukhikh, and T. Basova. J. Fluor. Chem., 2021, 246, 109780. https://doi.org/10.1016/j.jfluchem.2021.109780

    Article  CAS  Google Scholar 

  17. J. Vlček, I. A. Kühne, D. Zákutná, E. Marešová, L. Fekete, J. Otta, P. Fitl, and M. Vrňata. CrystEngComm, 2021, 23, 7237. https://doi.org/10.1039/D1CE01014J

    Article  CAS  Google Scholar 

  18. D. Klyamer, D. Bonegardt, and T. Basova. Chemosensors, 2021, 9. https://doi.org/10.3390/chemosensors9060133

    Article  CAS  Google Scholar 

  19. D. Bonegardt, D. Klyamer, A. Sukhikh, P. Krasnov, P. Popovetskiy, and T. Basova. Chemosensors, 2021, 9. https://doi.org/10.3390/chemosensors9060137

    Article  CAS  Google Scholar 

  20. A. Sukhikh, D. Bonegardt, D. Klyamer, and T. Basova. Dyes Pigm., 2021, 192, 109442. https://doi.org/10.1016/j.dyepig.2021.109442

    Article  CAS  Google Scholar 

  21. A. D. Becke. J. Chem. Phys., 1993, 98, 5648. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  22. C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  23. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg. J. Chem. Phys., 2010, 132, 154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  24. S. Grimme, S. Ehrlich, and L. Goerigk. J. Comput. Chem., 2011, 32, 1456. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  25. F. Weigend and R. Ahlrichs. Phys. Chem. Chem. Phys., 2005, 7, 3297. https://doi.org/10.1039/B508541A

    Article  CAS  PubMed  Google Scholar 

  26. N. Mardirossian and M. Head-Gordon. J. Chem. Phys., 2016, 144, 214110. https://doi.org/10.1063/1.4952647

    Article  CAS  PubMed  Google Scholar 

  27. O. A. Vydrov and T. Van Voorhis. J. Chem. Phys., 2010, 133, 244103. https://doi.org/10.1063/1.3521275

    Article  CAS  PubMed  Google Scholar 

  28. W. Hujo and S. Grimme. J. Chem. Theory Comput., 2011, 7, 3866. https://doi.org/10.1021/ct200644w

    Article  CAS  PubMed  Google Scholar 

  29. C. van Wüllen. J. Chem. Phys., 1998, 109, 392. https://doi.org/10.1063/1.476576

    Article  Google Scholar 

  30. F. Neese, F. Wennmohs, A. Hansen, and U. Becker. Chem. Phys., 2009, 356, 98. https://doi.org/10.1016/j.chemphys.2008.10.036

    Article  CAS  Google Scholar 

  31. R. Izsák and F. Neese. J. Chem. Phys., 2011, 135, 144105. https://doi.org/10.1063/1.3646921

    Article  CAS  PubMed  Google Scholar 

  32. F. Weigend. Phys. Chem. Chem. Phys., 2006, 8, 1057. https://doi.org/10.1039/B515623H

    Article  CAS  PubMed  Google Scholar 

  33. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian09, Revision D.01. Wallingford CT: Gaussian, Inc., 2013.

  34. F. Neese. WIREs Comput. Mol. Sci., 2017, 8, e1327. https://doi.org/10.1002/wcms.1327

    Article  Google Scholar 

  35. D. D. Klyamer, A. S. Sukhikh, P. O. Krasnov, S. A. Gromilov, N. B. Morozova, and T. V. Basova. Appl. Surf. Sci., 2016, 372, 79. https://doi.org/10.1016/j.apsusc.2016.03.066

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (project No. 21-73-00276). The calculations were performed using resources of the Siberian Supercomputing Centre of SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Nizovtsev.

Ethics declarations

The author declare that he has no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 9, 98382.https://doi.org/10.26902/JSC_id98382

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizovtsev, A.S. STRUCTURAL ISOMERS AND VIBRATIONAL SPECTRUM OF TETRAFLUOROSUBSTITUTED ZINC PHTHALOCYANINE. J Struct Chem 63, 1491–1495 (2022). https://doi.org/10.1134/S0022476622090104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622090104

Keywords

Navigation