Log in

Electron Transport and Piezoresistive Effect in Single-Walled Carbon Nanotube Films on Polyethylene Terephthalate Substrates

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The paper presents the experimental results on temperature dependences of electrical resistance of disordered single-walled carbon nanotube (SWNT) films on polyethylene terephthalate (PET) substrates and discusses the piezoresistive effect studied in the films within the strain ranging from –0.15% to +0.15%. The nanotubes were prepared by catalytic disproportionation of carbon monoxide on Fe particles obtained by ferrocene vapor decomposition. SWNT films were prepared by their in situ deposition on silicon substrates and transferred to PET substrates. Electron transport properties were studied from room temperature down to 77.4 K. It is shown that the experimental data are described by the fluctuation-induced tunneling conduction model. The effective activation energy estimated by approximating experimental data varies from 175 meV to 6.5 meV for the samples with the time of nanotube deposition varying from 5 min to 120 min, respectively. The strain gauge factor measured in the film with the smallest sheet electrical resistance appeared to be negative and equal to –14.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mechanical microsensors. Microtechnology and MEMS. / M. Elwenspoek and R. J. Wiegerink. Ed. H. Fujita, Liepmann, Dorian. Berlin: Springer–Verlag Berlin Heidelberg, 2001. Microtechnology and MEMS, 295.

    Google Scholar 

  2. An Introduction to Microelectromechanical Systems Engineering. Artech House Microelectromechanical Systems (MEMS) Series. / N. Maluf and K. Williams. Boston: Artech House Inc., 2004. Artech House Microelectromechanical Systems (MEMS) Series., 304.

    Google Scholar 

  3. A. V. Alaferdov, R. Savu, T. A. Rackauskas, S. Rackauskas, M. A. Canesqui, D. S. d. Lara, G. O. Setti, E. Joanni, G. M. de Trindade, U. B. Lima, A. S. de Souza, and S. A. Moshkalev. Nanotechnology., 2016, 27(37), 9.

    Article  Google Scholar 

  4. D. Q. Hu, Q. H. Wang, J. X. Yu, W. T. Hao, H. B. Lu, G. B. Zhang, X. H. Wang, and L. Z. Qiu. J. Nanosci. Nanotechn., 2016, 16(6), 5839–5842.

    Article  CAS  Google Scholar 

  5. O. Kanoun, C. Müller, A. Benchirouf, A. Sanli, T. N. Dinh, A. Al–Hamry, L. Bu, C. Gerlach, and A. Bouhamed. Sensors., 2014, 14, 10042–10071.

    Article  CAS  PubMed  Google Scholar 

  6. X. Li, R. Zhang, W. Yu, K. Wang, J. Wei, D. Wu, A. Cao, Z. Li, Y. Cheng, Q. Zheng, R. S. Ruoff, and H. Zhu. Sci. Rep., 2012, 2, 870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Z. Lou, S. Chen, L. L. Wang, K. Jiang, and G. Z. Shen. Nano Energy., 2016, 23, 7–14.

    Article  CAS  Google Scholar 

  8. J. R. Lu, W. G. Weng, X. F. Chen, D. J. Wu, C. L. Wu, and G. H. Chen. Adv. Funct. Mater., 2005, 15(8), 1358–1363.

    Article  CAS  Google Scholar 

  9. S. A. Mansour. eXPRESS Polym. Lett., 2008, 2(12), 836–845.

    Article  CAS  Google Scholar 

  10. G. Shi, Z. H. Zhao, J. H. Pai, I. Lee, L. Q. Zhang, C. Stevenson, K. Ishara, R. J. Zhang, H. W. Zhu, and J. Ma. Adv. Funct. Mater., 2016, 26(42), 7614–7625.

    Article  CAS  Google Scholar 

  11. T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber. Nature, 1998, 391(6662), 62–64.

    Article  CAS  Google Scholar 

  12. H. J. Dai. Acc. Chem. Res., 2002, 35(12), 1035–1044.

    Article  CAS  PubMed  Google Scholar 

  13. S. G. Louie. Carbon Nanotub Es: Synthesis, Structure, Properties, and Applications / M. S. Dresselhaus, et al. Berlin: Springer–Verlag Berlin, 2001, 113–145.

    Google Scholar 

  14. J. C. Charlier, X. Blase, and S. Roche. Rev. Modern Phys., 2007, 79(2), 677–732.

    Article  CAS  Google Scholar 

  15. A. B. Kaiser, G. Dusberg, and S. Roth. Phys. Rev. B, 1998, 57(3), 1418–1421.

    Article  CAS  Google Scholar 

  16. A. B. Kaiser, G. U. Flanagan, D. M. Stewart, and D. Beaglehole. Synthetic Met., 2001, 117(1–3), 67–73.

    Google Scholar 

  17. V. Skakalova, A. B. Kaiser, Y.–S. Woo, and S. Roth. Phys. Rev. B, 2006, 74(8), 085403.

    Article  CAS  Google Scholar 

  18. T. M. Barnes, J. L. Blackburn, J. van d. Lagemaat, T. J. Coutts, and M. J. Heben. ACS NANO, 2008, 2(9), 1968–1976.

    Article  CAS  PubMed  Google Scholar 

  19. K. Yanagi, H. Udoguchi, S. Sagitani, Y. Oshima, T. Takenobu, H. Kataura, T. Ishida, K. Matsuda, and Y. Maniwa. ACS NANO, 2010, 4(7), 4027–4032.

    Article  CAS  PubMed  Google Scholar 

  20. S. Ravi, A. B. Kaiser, and C. W. Bumby. Phys. Status Solidi B, 2013, 250(8), 1463–1467.

    Article  CAS  Google Scholar 

  21. C.–Y. Li and T.–W. Chou. Nanotechn., 2004, 15, 1493–1496.

    Article  CAS  Google Scholar 

  22. I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi. Smart Mater. Struct., 2006, 15(3), 737–748.

    Article  CAS  Google Scholar 

  23. N. Hu, Y. Karube, M. Arai, T. Watanabe, C. Yan, Y. Li, Y. Liu, and H. Fukunaga. Carbon, 2010, 48(3), 680–687.

    Article  CAS  Google Scholar 

  24. W. Obitayo and T. A. Liu. J. Sensors, 2012, 2012, 15.

    Article  Google Scholar 

  25. T. W. Ebbesen and P. M. Ajayan. Nature, 1992, 358(6383), 220–222.

    Article  CAS  Google Scholar 

  26. M. JoséYacamán, M. MikiYoshida, L. Rendón, and J. G. Santiesteban. Appl. Phys. Lett., 1992, 62(2), 202–204.

    Article  Google Scholar 

  27. T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, and R. E. Smalley. J. Phys. Chem., 1995, 99(27), 10694–10697.

    Article  CAS  Google Scholar 

  28. A. G. Nasibulin, S. D. Shandakov, M. Y. Timmermans, O. V. Tolochko, and E. I. Kauppinen. Inorg. Mater.: Appl. Res., 2011, 2(6), 589–595.

    Article  Google Scholar 

  29. Ya. A. Bryantsev, V. E. Arkhipov, A. I. Romanenko, A. S. Berdinsky, and A. V. Okotrub. First Annual Russian National Conference on Nanotechnologies, Nanomaterials and Microsystems Technologies NMST–2016 / Ed. A. V. Gridchin. Sedova Zaimka, Novosibirsk: Novosibirsk State Technical University, 2016, 11–15.

    Google Scholar 

  30. A. Jorio, M. Pimenta, A. Souza, R. Saito, G. Dresselhaus, and M. Dresselhaus. New J. Phys., 2003, 5, 139.1–139.17.

    Article  Google Scholar 

  31. V. A. Kuznetsov, A. I. Romanenko, A. S. Berdinsky, A. Y. Ledneva, S. B. Artemkina, and V. E. Fedorov. 39th Intern. Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) / Ed. Biljanovic P.10.1109/MIPRO.2016.7522101. Opatija, Croatia: IEEE, 2016, 10–13.

    Google Scholar 

  32. P. Sheng, E. K. Sichel, and J. I. Gittleman. Phys. Rev. Lett., 1978, 40(18), 1197–1200.

    Article  CAS  Google Scholar 

  33. P. Sheng. Phys. Rev. B, 1980, 21(6), 2180–2195.

    Article  CAS  Google Scholar 

  34. H. **e and P. Sheng. Phys. Rev. B, 2009, 79(16), 10.

    Google Scholar 

  35. S. Paschen, M. N. Bussac, L. Zuppiroli, E. Minder, and B. Hilti. J. Appl. Phys., 1995, 78(5), 3230–3237.

    Article  CAS  Google Scholar 

  36. E. K. Sichel, P. Sheng, J. I. Gittleman, and S. Bozowski. Phys. Rev. B, 1981, 24(10), 6131–6134.

    Article  CAS  Google Scholar 

  37. M. Salvato, M. Cirillo, M. Lucci, S. Orlanducci, I. Ottaviani, M. L. Terranova, and F. Toschi. Phys. Rev. Lett., 2008, 101(24), 4.

    Article  CAS  Google Scholar 

  38. M. Shiraishi and M. Ata. Synth. Met., 2002, 128(3), 235–239.

    Article  CAS  Google Scholar 

  39. Experimental structure analysis–Metallic bonded resistance strain gages–Characteristics and testing conditions. Dusseldorf: Verein Deutscher Ingenieure, 2007. 40.

  40. S. L. Zhang and J. C. M. Li. J. Polymer Science Part B–Polymer Physics, 2004, 42(2), 260–266.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kuznetsov.

Additional information

Original Russian Text © 2018 V. A. Kuznetsov, A. S. Berdinsky, A. I. Romanenko, Ya. A. Bryantsev, V. E. Arkhipov, A. V. Okotrub, and V. E. Fedorov.

Translated from Zhurnal Strukturnoi Khimii, Vol. 59, No. 4, pp. 943–950, May-June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, V.A., Berdinsky, A.S., Romanenko, A.I. et al. Electron Transport and Piezoresistive Effect in Single-Walled Carbon Nanotube Films on Polyethylene Terephthalate Substrates. J Struct Chem 59, 905–912 (2018). https://doi.org/10.1134/S0022476618040236

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618040236

Keywords

Navigation