Log in

Evaluation the origin of conformational preferences in trifluoroacetylacetaldehyde by detail analysis of the intramolecular hydrogen bond and π-electron delocalization in the ground and first excited states

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

In the current research, the origin of conformational preferences in trifluoro-acetylacetaldehyde (TFAAD) by detail analysis of the intramolecular hydrogen bond (IMHB) and π-electron delocalization (π-ED) was investigated. In this regard, all of the possible conformations of keto and enol tautomers of TFAAD at various theoretical levels were optimized. Our results reveal that the chelated enol forms (E11, E21) have extra stability with respect to the other conformations, and at all of the computational levels E21 is more stable than the E11 and identifies as the global minimum. We expected that the extra stability of E21 is probably related to the stronger intramolecular hydrogen bond (IMHB), but quantum chemical calculations confirm the stronger IMHB of E11. Since, the chelated forms are resonance assisted hydrogen bond (RAHB) systems, it seems that the π-ED concept can probably justify this duality. The significance of π-ED by the geometrical factor of Gilli (λ) and the harmonic oscillator model of aromaticity (HOMA) were assessed. According to these indicators, E21 has higher π-ED than E11, in excellent agreement with their stability order. Finally, the population analysis by the natural bond orbital method and atoms in molecules theory were carried out. The stabilization charge transfer energies of RAHB systems also indicate more π- ED in E21. Consequently the π-electron delocalization effect is the superior factor determining the global minimum. The IMHB of the chelated forms, in the first singlet excited state, were also studied. Surprisingly, the results show that the IMHB in E21 is stronger than in E11, in contrast to the ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Jefferey, Introduction to Hydrogen Bonding, University Press, Oxford, New York (1997).

    Google Scholar 

  2. G. Gilli and V. Bertolasi, the Chemistry of Enols, Rappoport ZEd, Wiley, Chichester UK (1990).

    Google Scholar 

  3. G. Gilli and P. Gilli, The Nature of Hydrogen Bond, University Press, Oxford (2009).

    Book  Google Scholar 

  4. V. Bertolasi, P. Gilli, V. Ferretti, and G. Gilli, J. Am. Chem. Soc., 113, 4917–4925 (1991).

    Article  CAS  Google Scholar 

  5. M. Schröder, F. Gatti, and H. D. Meyer, J. Chem. Phys., 134, 234307 (2011).

    Article  Google Scholar 

  6. M. Aschi, M. D’Abramo, F. Ramondo, I. Daidone, M. D’Alessandro, A. D. Nola, and A. Amadei, J. Phys. Org. Chem., 19, 518–553 (2006).

    Article  CAS  Google Scholar 

  7. A. Nowroozi, S. F. Tayyari, and H. Rahemi, Spectrochim. Acta, 59A, 1757 (2003).

    Article  CAS  Google Scholar 

  8. A. Nowroozi and H. J. Raissi, Mol. Struct. (THEOCHEM), 759, 93–100 (2006).

    Article  CAS  Google Scholar 

  9. G. V. Mil’nikov, et al., J. Chem. Phys., 119, No. 1, 10–13 (2003).

    Article  Google Scholar 

  10. V. B. Delchev and G. S. Nikolov, Monatsh. Chem., 131, No. 2, 107–115 (2000).

    Article  CAS  Google Scholar 

  11. M. D. Coutinho-Neto, A. Viel, and U. Manthe, J. Chem. Phys., 121, No. 19, 9207–9210 (2004).

    Article  CAS  Google Scholar 

  12. X. Xu, J. Zheng, and D. G. Truhlar, J. Am. Chem. Soc., 137, No. 25, 8026–8029 (2015).

    Article  CAS  Google Scholar 

  13. G. A. Pitsevich, A. E. Malevich, E. N. Kozlovskaya, I. Y. Doroshenko, V. E. Pogorelov, V. Sablinskas, and V. Balevicius, Spectrochim. Acta, 145A, 384–393 (2015).

    Article  Google Scholar 

  14. E. Nakhaei and A. Nowroozi, J. Comput. Theor. Chem., 1096, 27–32 (2016).

    Article  CAS  Google Scholar 

  15. V. V. Sliznev, S. B. Lapshina, and G. V. Girichev, J. Struct. Chem., 43, 47–55 (2002).

    Article  CAS  Google Scholar 

  16. V. V. Sliznev, S. B. Lapshina, and G. V. Girichev, J. Struct. Chem., 47, 220–231 (2006).

    Article  CAS  Google Scholar 

  17. H. Azizi Toupkanloo and S. F. Tayyari, J. Struct. Chem., 57, 65–75 (2016).

    Article  CAS  Google Scholar 

  18. A. E. Reed, L. A. Curtis, and F. A. Weinhold, Chem. Rev., 88, 899–926 (1988).

    Article  CAS  Google Scholar 

  19. R. F. W. Bader, Atoms in Molecules, A Quantum Theory, Clarendon, Oxford, UK (1990).

    Google Scholar 

  20. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Jr. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03 revision C 02, Gaussian Inc, Pittsburgh (2003).

    Google Scholar 

  21. F. Biegler-König, J. Schönbohm, and D. Bayles, J. Comp. Chem., 22, 545–559 (2001).

    Article  Google Scholar 

  22. D. E. Glendening, A. E. Reed, and J. E. Carpenter, Weinhold, F. NBO, Version 3.1.

  23. J. Kruszewski and T. M. Krygowski, Bull. Acad. Pol. Sci. Chim., 20, 907–915 (1972).

    CAS  Google Scholar 

  24. J. Kruszewski and T. M. Krygowski, Tetrahedron Lett., 3839–3842 (1972).

    Google Scholar 

  25. P. Shuster and G. Zundel, The Hydrogen Bond. Recent Development in Theory and Experiment, Nourth-Holland, Amesterdam (1976).

    Google Scholar 

  26. I. Rozas, I. Alkorta, and J. Elguero, J. Phys. Chem. A, 105, 10462–10467 (2001).

    Article  CAS  Google Scholar 

  27. M. Jablonski, A. Kaczmarek, and A. J. Sadlej, J. Phys. Chem. A, 110, 10890–10898 (2006).

    Article  CAS  Google Scholar 

  28. A. Nowroozi, H. Raissi, and F. Farzad, J. Mol. Struct. (THEOCHEM), 730, 161–169 (2005).

    Article  CAS  Google Scholar 

  29. G. Buemi and F. Zuccarello, Chem. Phys., 306, 115–129 (2004).

    Article  CAS  Google Scholar 

  30. E. Espinosa and E. Molins, J. Chem. Phys., 113, 5686–5694 (2000).

    Article  CAS  Google Scholar 

  31. A. Nowroozi, H. Hajiabadi, and F. Akbari, Struct. Chem., 25, 251–258 (2014).

    Article  CAS  Google Scholar 

  32. P. L. A. Popelier and R. F. W. Bader, J. Phys. Chem., 189, 542–548 (1992).

    CAS  Google Scholar 

  33. I. Rozas, I. Alkorta, and J. Elguero, J. Phys. Chem. A, 101, 9457–9463 (1997).

    Article  CAS  Google Scholar 

  34. B. A. Shainyan, N. N. Chipanina, T. N. Aksamentova, L. P. Oznobikhina, G. N. Rosentsevig, and I. B. Rosentsevig, Tetrahedron, 66, 8551–8556 (2010).

    Article  CAS  Google Scholar 

  35. L. Sobczyk, S. J. Grabowski, and T. M. Krygowski, Chem. Rev., 105, 3513–3560 (2005).

    Article  CAS  Google Scholar 

  36. J. Poater, M. Duran, M. Solà, and B. Silvi, Chem. Rev., 105, 3911–3947 (2005).

    Article  CAS  Google Scholar 

  37. T. M. Krygowski and B. T. Stepień, Chem. Rev., 105, 3482–3512 (2005).

    Article  CAS  Google Scholar 

  38. T. M. Krygowski and M. K. Cyranski, Chem. Rev., 101, 1385–142 (2001).

    Article  CAS  Google Scholar 

  39. A. Nowroozi, E. Nakhaei, and E. Masumian, Struct. Chem., 25, 1415–1422 (2014).

    Article  CAS  Google Scholar 

  40. G. Gilli, F. Bellucci, V. Ferretti, and V. Bertolasi, J. Am. Chem. Soc., 111, 1023–1028 (1989).

    Article  CAS  Google Scholar 

  41. T. M. Krygowski and M. K. Cyranski, Tetrahedron, 52, 1713–1722 (1996).

    Article  CAS  Google Scholar 

  42. A. Schafer, C. Huber, and R. Ahlrichs, J. Chem. Phys., 100, 5829–5835 (1994).

    Article  Google Scholar 

  43. R. Ahlrichs, M. Bar, M. Haser, H. Horn, and C. Kolmel, Chem. Phys. Lett., 162, 165–169 (1989).

    Article  CAS  Google Scholar 

  44. K. Shayan and A. Nowroozi, Struct. Chem., 27, 1769–1780 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nowroozi.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naeini, F.G., Nowroozi, A. Evaluation the origin of conformational preferences in trifluoroacetylacetaldehyde by detail analysis of the intramolecular hydrogen bond and π-electron delocalization in the ground and first excited states. J Struct Chem 58, 1251–1261 (2017). https://doi.org/10.1134/S0022476617060257

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617060257

Keywords

Navigation