Log in

Comparative Analysis of the Effects of Insulin and Metformin on the Ulcerogenic Action of Indomethacin in Rats with Streptozotocin-Induced Diabetes

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

One consequence of diabetes is gastropathy, manifested by an increase in gastric ulcer formation. Insulin is the primary medication used to treat type 1 diabetes. Metformin, used for type 2 diabetes, is also considered for treating type 1 diabetes. The aim of the study is to compare the effects of insulin and metformin on the ulcerogenic action of indomethacin (IM) in rats with streptozotocin-induced diabetes (type 1 diabetes) as well as in non-diabetic rats. Streptozotocin (STR, 60 mg/kg, i.p.) was administered once 2 weeks before IM administration (35 mg/kg, s.c.) to Sprague-Dawley male rats. The development of diabetes was assessed based on blood glucose levels and changes in body weight. Insulin (2 IU/kg, i.p.) or metformin (100 mg/kg, per os) was administered daily, starting from the 8th day after STR administration, for 7 days. Rats were fasted for 20 hours before IM administration. Four hours after IM administration, rats were decapitated, blood was collected to test corticosterone and glucose levels, and stomachs were extracted to assess the area of IM-induced erosions. During the first week after STR administration, characteristic signs of type 1 diabetes developed: an increase in blood glucose levels and slowed body weight gain. Signs of chronic stress appeared after 2 weeks. The development of STR-induced diabetes led to a marked exacerbation of the ulcerogenic action of IM, as evidenced by the increased average area of IM-induced erosions. The administration of both insulin and metformin prevented the pro-ulcerogenic action of type 1 diabetes under IM-induced ulcer formation conditions. For insulin, but not metformin, a gastroprotective effect was also observed in non-diabetic rats. The results obtained indicate the equal effectiveness of insulin and metformin in correcting the pro-ulcerogenic action of STR-induced diabetes in rats: both drugs prevented it. However, under our experimental conditions, in non-diabetic rats a gastroprotective effect was observed only for insulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Dedov II, Shestakova MV, Vikulova OK, Zheleznyakova AV, Isakov MA, Sazonova DV, Mokrysheva NG (2023) Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Diabetes mellitus 26(2): 104–123. https://doi.org/10.14341/DM13035

    Article  Google Scholar 

  2. Mousavi SS, Namayandeh SM, Fallahzadeh H, Rahmanian M, Mollahosseini M (2023) Comparing the effectiveness of metformin with lifestyle modification for the primary prevention of type II diabetes: a systematic review and meta-analysis. BMC Endocr Disord 23: 198. https://doi.org/10.1186/S12902-023-01445-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko EJ, Magliano DJ (2022) IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 183: 109119. https://doi.org/10.1016/J.DIABRES.2021.109119

    Article  PubMed  Google Scholar 

  4. Reynolds L, Luo Z, Singh K (2023) Diabetic complications and prospective immunotherapy. Front Immunol 14: 1219598. https://doi.org/10.3389/FIMMU.2023.1219598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Szlachcic A, Majka J, Strzalka M, Szmyd J, Pajdo R, Ptak-Belowska A, Kwiecien S, Brzozowski T (2013) Experimental healing of preexisting gastric ulcers induced by hormones controlling food intake ghrelin, orexin-A and nesfatin-1 is impaired under diabetic conditions. A key to understanding the diabetic gastropathy? J Physiol Pharmacol 64(5): 625–637. https://pubmed.ncbi.nlm.nih.gov/24304576/

    CAS  PubMed  Google Scholar 

  6. Podvigina TT, Filaretova LP (2020) Sensitivity of the gastric mucosa to ulcerogenic factors and the activity of the hypothalamo-pituitary-adrenocortical system in the development of streptozotocin-induced diabetes. Rossijskij fiziologicheskij zhurnal im. I.M. Sechenova 106(2): 176–188. (in Russ).

    Google Scholar 

  7. Podvigina TT, Bagaeva TR, Bobryshev PY, Filaretova LP (2011) High sensitivity of gastric mucosa to ulcerogenic effect of indomethacin in rats with diabetes. Bull Exp Biol Med 152: 43–46. https://doi.org/10.1007/S10517-011-1449-Y

    Article  CAS  PubMed  Google Scholar 

  8. Konturek PC, Brzozowski T, Burnat G, Szlachcic A, Koziel J, Kwiecien S, Konturek SJ, Harsch IA (2010) Gastric ulcer healing and stress-lesion preventive properties of pioglitazone are attenuated in diabetic rats. J Physiol Pharmacol 61(4): 429–436. https://pubmed.ncbi.nlm.nih.gov/20814070/

    CAS  PubMed  Google Scholar 

  9. Morsy MA, Ashour OM, Fouad AA, Abdel-Gaber SA (2010) Gastroprotective effects of the insulin sensitizers rosiglitazone and metformin against indomethacin-induced gastric ulcers in Type 2 diabetic rats. Clin Exp Pharmacol Physiol 37: 173–177. https://doi.org/10.1111/J.1440-1681.2009.05250.X

    Article  CAS  PubMed  Google Scholar 

  10. AbdelAziz EY, Tadros MG, Menze ET (2021) The effect of metformin on indomethacin-induced gastric ulcer: Involvement of nitric oxide/Rho kinase pathway. Eur J Pharmacol 892: 173812. https://doi.org/10.1016/J.EJPHAR.2020.173812

    Article  CAS  PubMed  Google Scholar 

  11. Kosasih S, Telisinghe PU, Lim KC, Metussin A, Asli R, Chong VH (2023) Chronic non-healing gastric ulcer in a patient with poorly controlled diabetes mellitus. Clin Endosc 56: 258–260. https://doi.org/10.5946/CE.2022.203

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen J, Yuan S, Fu T, Ruan X, Qiao J, Wang X, Li X, Gill D, Burgess S, Giovannucci EL, Larsson SC (2023) Gastrointestinal Consequences of Type 2 Diabetes Mellitus and Impaired Glycemic Homeostasis: A Mendelian Randomization Study. Diabetes Care 46: 828–835. https://doi.org/10.2337/DC22-1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shpakov AO, Zorina II, Derkach KV (2023) Hot Spots for the Use of Intranasal Insulin: Cerebral Ischemia, Brain Injury, Diabetes Mellitus, Endocrine Disorders and Postoperative Delirium. Int J Mol Sci 24(4): 3278. https://doi.org/10.3390/IJMS24043278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tian YM, Liu Y, Wang S, Dong Y, Su T, Ma HJ, Zhang Y (2016) Anti-diabetes effect of chronic intermittent hypobaric hypoxia through improving liver insulin resistance in diabetic rats. Life Sci 150: 1–7. https://doi.org/10.1016/J.LFS.2016.02.053

    Article  CAS  PubMed  Google Scholar 

  15. Tian J, Fan J, Zhang T (2023) Mitochondria as a target for exercise-mitigated type 2 diabetes. J Mol Histol 54: 543–557. https://doi.org/10.1007/S10735-023-10158-1

    Article  PubMed  Google Scholar 

  16. Takeuchi K, Ueshima K, Ohuchi T, Okabe S (1994) Induction of gastric lesions and hypoglycemic response by food deprivation in streptozotocin-diabetic rats. Dig Dis Sci 39: 626–634. https://doi.org/10.1007/BF02088352

    Article  CAS  PubMed  Google Scholar 

  17. Vador N, Jagtap AG, Damle A (2012) Vulnerability of Gastric Mucosa in Diabetic Rats, Its Pathogenesis and Amelioration by Cuminum cyminum. Indian J Pharm Sci 74: 387–396. https://doi.org/10.4103/0250-474X.108413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Igarashi S, Kume E, Narita H, Kinoshita M (2000) Food deprivation depletes gastric mucus glycoprotein in streptozotocin-induced diabetic rats. Jpn J Pharmacol 84: 51–55. https://doi.org/10.1254/JJP.84.51

    Article  CAS  PubMed  Google Scholar 

  19. Tashima K, Korolkiewicz R, Kubomi M, Takeuchi K (1998) Increased susceptibility of gastric mucosa to ulcerogenic stimulation in diabetic rats--role of capsaicin-sensitive sensory neurons. Br J Pharmacol 124: 1395–1402. https://doi.org/10.1038/SJ.BJP.0701974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Podvigina T, Yarushkina NI, Filaretova LP (2022) Effects of Running on the Development of Diabetes and Diabetes-Induced Complications. Journal of Evolutionary Biochemistry and Physiology 58(1): 174–192. https://doi.org/10.31857/S0869813922020078

    Article  Google Scholar 

  21. Podvigina TT, Bagaeva TR, Filaretova LP (2016) Gastroprotective effect of corticotropin-releasing factor in a model of streptozotocin-induced diabetes in rats. Rossijskij fiziologicheskij zhurnal im. I.M. Sechenova 102(11): 1352–1362. (In Russ)

    CAS  Google Scholar 

  22. Podvigina TT, Bagaeva TR, Morozova OY, Filaretova LP (2011) Sensitivity of the gastric mucosa to the ulcerogenic action of indomethacin at different stages of the development of streptozotocin-induced diabetes in rats. Rossijskij fiziologicheskij zhurnal im. I.M. Sechenova 97(9): 957–967. (In Russ)

    CAS  Google Scholar 

  23. Podvigina TT. Komkova OP, Vetrovoy OV, Yaruskina NI, Filaretova LP (2023) Comparison of the Effect of Kee** Rats in the Mountains and on the Plain on the Development of Streptozotocin-Induced Diabetes and Gastric Ulceration. Journal of Evolutionary Biochemistry and Physiology. 59(5): 1836-1850. https://doi.org/10.1134/S0022093023050277

    Article  Google Scholar 

  24. Zaharieva DP, Riddell MC (2023) Advances in Exercise and Nutrition as Therapy in Diabetes. Diabetes Technol Ther 25: S146–S160. https://doi.org/10.1089/DIA.2023.2509

    Article  PubMed  Google Scholar 

  25. Home P (2021) The evolution of insulin therapy. Diabetes Res Clin Pract 175: 108816. https://doi.org/10.1016/J.DIABRES.2021.108816

    Article  CAS  PubMed  Google Scholar 

  26. Phadtare P, Patil D, Desai S (2023) Nanotechnology: Newer Approach in Insulin Therapy. Pharm Nanotechnol 11: 3–9. https://doi.org/10.2174/2211738510666220928111142

    Article  CAS  PubMed  Google Scholar 

  27. Zakharova IO, Bayunova LV, Derkach KV, Ilyasov IO, Shpakov AO, Avrova NF (2022) Influence of intranasally insulin and gangliosides on metabolic parameters and of activity of the insulin system in the liver of rats with type 2 diabetes. Journal of evolutionary biochemistry and physiology 58(2): 141–154. (In Russ).

    Article  Google Scholar 

  28. Dumitrescu R, Mehedintu C, Briceag I, Purcărea VL, Hudita D (2015) Metformin-clinical pharmacology in PCOs. J Med Life 8(2): 187-192. https://pubmed.ncbi.nlm.nih.gov/25866577/

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Giusti L, Tesi M, Ciregia F, Marselli L, Zallocco L, Suleiman M, De Luca C, Del Guerra S, Zuccarini M, Trerotola M, Eizirik DL, Cnop M, Mazzoni MR, Marchetti P, Lucacchini A, Ronci M (2022) The Protective Action of Metformin against Pro-Inflammatory Cytokine-Induced Human Islet Cell Damage and the Mechanisms Involved. Cells 11(15): 2465. https://doi.org/10.3390/CELLS11152465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Poh Shean W, Chin Voon T, Long Bidin MB Bin, Adam NLB (2023) Effects of metformin on glycaemic variability in combination with insulin in overweight/obese patients with type 1 diabetes. J R Coll Physicians Edinb 53: 94–103. https://doi.org/10.1177/14782715231170958

    Article  PubMed  Google Scholar 

  31. Xu L, Wang W, Song W (2022) A combination of metformin and insulin improve cardiovascular and cerebrovascular risk factors in individuals with type 1 diabetes mellitus. Diabetes Res Clin Pract 191: 110073. https://doi.org/10.1016/J.DIABRES.2022.110073

    Article  CAS  PubMed  Google Scholar 

  32. Foretz M, Guigas B, Viollet B (2023) Metformin: update on mechanisms of action and repurposing potential. Nat Rev Endocrinol 19: 460–476. https://doi.org/10.1038/S41574-023-00833-4

    Article  CAS  PubMed  Google Scholar 

  33. Huang NL, Chiang SH, Hsueh CH, Liang YJ, Chen YJ, Lai LP (2009) Metformin inhibits TNF-alpha-induced IkappaB kinase phosphorylation, IkappaB-alpha degradation and IL-6 production in endothelial cells through PI3K-dependent AMPK phosphorylation. Int J Cardiol 134: 169–175. https://doi.org/10.1016/J.IJCARD.2008.04.010

    Article  PubMed  Google Scholar 

  34. Teixeira DF, Santos AM, Oliveira AMS, Nascimento Júnior JAC, Frank LA, Santana Souza MT De, Camargo EA, Serafini MR (2021) Pharmaceuticals agents for preventing NSAID-induced gastric ulcers: a patent review. Expert Rev Clin Pharmacol 14: 677–686. https://doi.org/10.1080/17512433.2021.1909475

    Article  CAS  PubMed  Google Scholar 

  35. Sostres C, Gargallo CJ, Lanas A (2014) Interaction between Helicobacter pylori infection, nonsteroidal anti-inflammatory drugs and/or low-dose aspirin use: old question new insights. World J Gastroenterol 20: 9439–9450. https://doi.org/10.3748/WJG.V20.I28.9439

    Article  PubMed  PubMed Central  Google Scholar 

  36. Filaretova LP, Morozova OY, Yarushkina NI (2021) Peripheral corticotropin-releasing hormone may protect the gastric musosa against indometacin-induced injury through involvement of glucocorticoids. J Physiol Pharmacol 72: 1–10. https://doi.org/10.26402/JPP.2021.5.06

    Article  CAS  Google Scholar 

  37. Derkach KV, Bondareva VM, Shpakov AO (2017) Co-administration of intranasally delivered insulin and proinsulin C-peptide to rats with the types 1 and 2 diabetes mellitus restores their metabolic parameters. Adv Gerontol. 30(6): 851–858. (In Russ).

    CAS  PubMed  Google Scholar 

  38. Baraka AM, Deif MM (2011) Role of activation of 5’-adenosine monophosphate-activated protein kinase in gastric ulcer healing in diabetic rats. Pharmacology 88: 275–283. https://doi.org/10.1159/000331879

    Article  CAS  PubMed  Google Scholar 

  39. Derkach KV, Bondareva VM, Basova NE, Kuznetsova LA, Shpakov AO (2021) Combined use of metformin and intranasal insulin normalizes glucose sensitivity and hormonal status in rats with type 2 diabetes. Integrative Physiology 2(4): 399–411. (In Russ)

    Article  Google Scholar 

  40. Zelena D, Filaretova L, Mergl Z, Barna I, Tóth ZE, Makara GB (2006) Hypothalamic paraventricular nucleus, but not vasopressin, participates in chronic hyperactivity of the HPA axis in diabetic rats. Am J Physiol Endocrinol Metab 290(2): E243–250. https://doi.org/10.1152/AJPENDO.00118.2005

    Article  CAS  PubMed  Google Scholar 

  41. Korolkiewicz R, Tashima K, Kubomi M, Kato S, Takeuchi K (1999) Increased susceptibility of diabetic rat gastric mucosa to food deprivation during cold stress. Digestion 60: 528–537. https://doi.org/10.1159/000007702

    Article  CAS  PubMed  Google Scholar 

  42. Tashima K, Fujita A, Takeuchi K (2000) Aggravation of ischemia/reperfusion-induced gastric lesions in streptozotocin-diabetic rats. Life Sci 67: 1707–1718. https://doi.org/10.1016/S0024-3205(00)00754-2

    Article  CAS  PubMed  Google Scholar 

  43. Filaretova L, Tanaka A, Miyazawa T, Kato S, Takeuchi K (2002) Mechanisms by which endogenous glucocorticoid protects against indomethacin-induced gastric injury in rats. Am J Physiol—Gastrointest Liver Physiol 283: 1082–1089. https://doi.org/10.1152/ajpgi.00189.2002

    Article  Google Scholar 

  44. Filaretova L, Bobryshev P, Bagaeva T, Podvigina T, Takeuchi K (2007) Compensatory gastroprotective role of glucocorticoid hormones during inhibition of prostaglandin and nitric oxide production and desensitization of capsaicin-sensitive sensory neurons. Inflammopharmacology 15: 146–53. https://doi.org/10.1007/s10787-007-1589-x

    Article  CAS  PubMed  Google Scholar 

  45. Pal R, Bhadada SK (2023) AGEs accumulation with vascular complications, glycemic control and metabolic syndrome: A narrative review. Bone 176: 116884. . https://doi.org/10.1016/J.BONE.2023.116884

    Article  PubMed  Google Scholar 

  46. Mahmood T, Fahim MF, Ahsan S, Qidwai U, Memon MS (2023) Ocular Complications Associated With Diabetes And The Risk Of Sustainable Blindness; A Real World Analysis. J Pak Med Assoc 73: 1453–1456. https://doi.org/10.47391/JPMA.8001

    Article  PubMed  Google Scholar 

  47. İpek BE, Yüksel M, Cumbul A, Ercan F, Cabadak H, Aydın B, Alican İ (2022) The Effect of Metformin on Ethanol- and IndomethacinInduced Gastric Ulcers in Rats. Turk J Gastroenterol 33: 767–776. https://doi.org/10.5152/TJG.2022.21195

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lichtenberger LM (2023) Development of the PC-NSAID technology: From contact angle to Vazalore®. Drug Discov Today 28(1): 103411. https://doi.org/10.1016/J.DRUDIS.2022.103411

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We express our gratitude to the staff of the Laboratory of Experimental Endocrinology of the Pavlov Institute of Physiology of the Russian Academy of Sciences: Kolbasova T.I., Afanasyeva L.A. for assistance in conducting experiments.

Funding

The study was supported by a grant of the WCRC (agreement no. 075-15-2022-303 dated April 21, 2022) Pavlov Center “Integrative physiology—medicine, high-tech healthcare and stress tolerance technologies”.

Author information

Authors and Affiliations

Authors

Contributions

The idea of the work and planning of the experiment (L.P.F., T.T.P.), conducting the experiment (O.P.K., T.T.P., O.Yu.M, P.V.P.), data processing (N.I.Ya., O.P.K.), writing and editing the manuscript (L.P.F., N.I.Ya., T.T.P.).

Corresponding author

Correspondence to N. I. Yarushkina.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All experiments were conducted in compliance with ethical standards approved by the legal acts of the Russian Federation, the principles of the Basel Declaration and the recommendations of the Commission on Animal Housing and Use of the Pavlov Institute of Physiology of the Russian Academy of Sciences (Protocol no. 01/24 of January 24, 2022).

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Dyomina

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarushkina, N.I., Podvigina, T.T., Komkova, O.P. et al. Comparative Analysis of the Effects of Insulin and Metformin on the Ulcerogenic Action of Indomethacin in Rats with Streptozotocin-Induced Diabetes. J Evol Biochem Phys 59, 2399–2412 (2023). https://doi.org/10.1134/S0022093023060406

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023060406

Keywords:

Navigation