Log in

Mathematical Modeling for Extinguishing Forest Fires Using Water Capsules with a Thermoactive Shell

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The article presents a new mathematical model for the process of extinguishing forest fires with dispersed water delivered to the fire site by water capsules in a thermoactive shell. When moving in a medium above the critical temperature, the capsule shell accumulates an integral amount of damage with an intensity proportional to the distance traveled and the excess of the temperature above critical. When the integral parameter reaches the value of the thermal stability coefficient of the shell, the shell breaks and releases water in dispersed form. When several capsules are dropped successively, each of them enters a medium the temperature of which is formed by the previous capsules. After calculating the distribution of dispersed water from the capsules, the dynamics of a forest fire is calculated based on a physicomathematical model. The article analyzes the key parameters and factors that determine the effectiveness of fire extinguishing. The dynamics of fire suppression have been studied depending on the number of capsules per unit length of the fire front, the values of the integral parameter of the thermal stability of the shell, and the volume of discharged water. The results of numerical simulation showed that, at a small value of the integral thermal stability parameter, the capsule shell ruptures at the level of the top of the forest canopy; therefore, the successful extinguishing of a fire requires successive discharge of a large number of capsules. Too high a value of the thermal stability coefficient leads to the rupture of the shells on the ground, and the drop** of capsules does not affect the burning in the upper part of the vegetation layer. The maximum success in extinguishing a forest fire is achieved when the thermoactive shell breaks in the middle height of the fire front. Successive discharge of capsules makes it possible to distribute water vertically, more fully cover the fire vulnerability zone, and thereby ensure greater effectiveness of firefighting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Vileń, T. and Fernandes, P.M., Forest fires in mediterranean countries: CO2 emissions and mitigation possibilities through prescribed burning, Environ. Manag., 2011, vol. 48, pp. 558–567. https://doi.org/10.1007/s00267-011-9681-9

    Article  ADS  Google Scholar 

  2. Van der Werf, G.R., Randerson, J.T., Giglio, L., van Leeuwen, T.T., Chen, Y., Rogers, B.M., Mu, M., van Marle, M.J.E., Morton, D.C., Collatz, G.J., Yokelson, R.J., and Kasibhatla, P.S., Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 2017, vol. 9, pp. 697–720. https://doi.org/10.5194/essd-9-697-2017

    Article  ADS  Google Scholar 

  3. Kovalev, A.N. and Zhuravleva, L.A., Perspective directions of suppressing forest and steppe fires, Nauch. Zhizn’, 2012, no. 4, pp. 153–157.

  4. Khasanov, I.R. and Moskvilin, E.A., in Proceedings of the 15th Scientific-Practical Conference on Problems of Burning and Extinguishing Fires at the Turn of the Century, Moscow, November 3–4, 1999, Moscow: All-Russ. Inst. Fire Protect. Ministry of Internal Affairs of Russia, 1999, Part 1, pp. 300–301.

  5. Abduragimov, I.M., Kuprin, G.N., and Kuprin, D.S., Fast-hardening foams–a new era in fighting forest fires, Pozhary ChS, 2016, no. 2, pp. 7–13. https://doi.org/10.25257/FE.2016.2.7-13

  6. Kopylov, N.P., Karpov, V.N., Kuznetsov, A.E., Fedotkin, D.V., Khasanov, I.R., and Sushkina, E.Yu., Peculiarities of the forest firefighting with the use of aircrafts, Vestn. Tomsk. Univ., Mat. Mekh., 2019, no. 59, pp. 79–86. https://doi.org/10.17223/19988621/59/8

  7. Satoh, K., Maeda, I., Kuwahara, K., and Yang, K.T., A numerical study of water dump in aerial fire fighting, Fire Safety Sci., 2005, vol. 8, pp. 777–787. https://doi.org/10.3801/IAFSS.FSS.8-777

    Article  Google Scholar 

  8. Alekhanov, Yu.V., Bliznetsov, M.V., Vlasov, Yu.A., Dudin, V.I., Levushov, A.E., Logvinov, A.I., Lomtev, S.A., and Meshkov, E.E., Interaction of dispersed water with flame, Tech. Phys. Lett., 2003, vol. 29, pp. 218–220. https://doi.org/10.1134/1.1565638

    Article  ADS  Google Scholar 

  9. Meshkov, E.E., Oreshkov, V.O., and Yanbaev, G.M., Droplet cloud formation upon disintegration of free-falling water ball, Tech. Phys. Lett., 2011, vol. 37, pp. 728–730. https://doi.org/10.1134/S1063785011080116

    Article  ADS  Google Scholar 

  10. SEM-SAFE® by Danfoss High-Pressure Water Mist Fire Fighting System https://semsafe.danfoss.com/technologies/watermist/. Accessed April 4, 2020.

  11. Raoult, F., Lacour, S., Carissimo, B., Trinquet, F., Delahaye, A., and Fournaison, L., CFD water spray model development and physical parameter study on the evaporative cooling, Appl. Therm. Eng., 2019, vol. 149, pp. 960–974. https://doi.org/10.1016/j.applthermaleng.2018.12.063

    Article  Google Scholar 

  12. Śmigielski, G., Lewandowski, D., Dygdała, R.S., Stefański, K., and Urbaniak, W., Water capsule flight–a theoretical analysis and experimental verification, Metrol. Meas. Syst., 2009, vol. 16, pp. 313–322. https://www.researchgate.net/publication/236853073_Water_capsule_flight_-_A_theoretical_analysis_experimental_setup_and_experimental_verification. Accessed November 4, 2020.

    Google Scholar 

  13. Śmigielski, G., Dygdała, R., Kunz, M., Lewandowski, D., and Stefański, K., in Proceedings of the 19th IMEKO World Congress on Fundamental and Applied Metrology, Lisbon, Portugal, September 6–11, 2009, pp. 2208–2213.

  14. Li, Z. and Wang, Q., Experimental study of explosive water mist extinguishing fire, Proc. Eng., 2011, vol. 11, pp. 258–267. https://doi.org/10.1016/j.proeng.2011.04.655

    Article  Google Scholar 

  15. Dale, E.K., Simulation and Modelling of Water Spray in the 3D Explosion Simulation Program FLACS, Bergen: Univ. Bergen, 2004. http://bora.uib.no/bitstream/handle/1956/1326/Masteroppgave-dale.pdf?sequence=1&isAllowed=y. Accessed April 4, 2020.

  16. https://www.emicontrols.com/en/fire-fighting/application-areas/forest-fires. Accessed April 4, 2020.

  17. Aydin, B., Selvi, E., Tao, J., and Starek, M.J., Use of fire-extinguishing balls for a conceptual system of drone-assisted wildfire fighting, Drones, 2019, vol. 3, p. 17. https://doi.org/10.3390/drones3010017

    Article  Google Scholar 

  18. Nakoryakov, V.E., Kuznetsov, G.V., and Strizhak, P.A., Limited transverse sizes of a droplet cloud under disintegration of a water mass during its fall from a great height, Dokl. Phys., 2017, vol. 62, pp. 333–336. https://doi.org/10.1134/S1028335817070060

    Article  ADS  Google Scholar 

  19. Zhdanova, A.O., Kuznetsov, G.V., Strizhak, P.A., and Shlegel’, N.E., in Proceedings of the 7th Russian Conference on Heat Transfer, Moscow, October 22–26, 2018, Moscow: Mosk. Energet. Inst., 2018, pp. 236–239.

  20. Zhdanova A.O., Kuznetsov, G.V., Nyashina, G.S., and Voitkov, I.S., Interaction of a liquid aerosol with the combustion front of a forest combustible material under the conditions of countercurrent air flow, J. Eng. Phys. Thermophys., 2019, vol. 92, pp. 687–693. https://doi.org/10.1007/s10891-019-01978-8

    Article  Google Scholar 

  21. Volkov, R.S., Kopylov, N.P., Kuznetsov, G.V., and Khasanov, I.R., Experimental investigation of the suppression of crown and ground forest fires, J. Eng. Phys. Thermophys., 2019, vol. 92, pp. 1453–1465. https://doi.org/10.1007/s10891-019-02064-9

    Article  Google Scholar 

  22. Nijdam, J.J., Guo, B., Fletcher, D.F., and Langrish, T.A.G., Lagrangian and Eulerian models for simulating turbulent dispersion and coalescence of droplets within a spray, Appl. Math. Model., 2006, vol. 30, pp. 1196–1211. https://doi.org/10.1016/j.apm.2006.02.001

    Article  MATH  Google Scholar 

  23. Beau, P.A., Modelisation de l’atomisation d’un jet liquid. Application aux sprays diesel, PhD Dissertation, Rouen: Univ. Rouen, 2006.

  24. Babinsky, E. and Sojka, P.E., Modeling drop size distributions, Progr. Energ. Combust. Sci., 2002, vol. 28, pp. 303–329. https://doi.org/10.1016/S0360-1285(02)00004-7

    Article  Google Scholar 

  25. https://hightech.fm/2020/01/22/elbit-systems. Accessed August 4, 2020.

  26. https://caylym.com/. Accessed August 4, 2020.

  27. Grishin, A.M., Matematicheskoe modelirovanie lesnykh pozharov i novye sposoby bor’by s nimi (Mathematical Modeling of Forest Fires and New Ways to Combat them), Novosibirsk: Nauka, 1992.

  28. Kataeva, L.Y., Maslennikov, D.A., and Loshchilova, N.A., On the laws of combustion wave suppression by free water in a homogeneous porous layer of organic combustible materials, Fluid Dyn., 2016, vol. 51, pp. 389–399. https://doi.org/10.1134/S001546281603011X

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Babkin, A.V., Kolpakov, V.I., Okhitin, V.N., and Selivanov, V.V., Chislennye metody v zadachakh fiziki bystroprotekayushchikh protsessov (Numerical Methods in Problems of Physics of Fast Processes), Moscow: MGTU im. N.E. Baumana, 2006.

  30. Samarskii, A.A. and Gulin, A.V., Chislennye metody (Numerical Methods), Moscow: Nauka, 1989.

  31. Maslennikov, D.A., Belotserkovskaya, I.E., Loshchilov, S.A., and Katayeva, L.Yu., Osobennosti matematiches-kogo modelirovaniya rasprostraneniya summarnogo teplovogo potoka pri lesnykh pozharakh (Features of Mathematical Modeling of the Spread of the Total Heat Flow during Forest Fires), Nizh. Novgorod: Stimul-ST, 2012.

  32. Katayeva, L.Yu., Maslennikov, D.A., and Belotserkovskaya, I.E., Numerical modeling of fire dynamics taking into account the terrain and external velocity field, Pozharovzryvobezopasnost’, 2012, vol. 21, no. 12, pp. 49–58.

    Article  Google Scholar 

  33. Abduragimov, I.M., Govorov V.YU., and Makarov, V.E., Fiziko-khimicheskiye osnovy razvitiya i tusheniya pozharov (Physicochemical Bases of Development and Extinguishing of Fires), Moscow: VIPTSh MVD SSSR, 1980.

  34. Gundar, S.V. and Denisov, A.N., in Proceedings of the 20th Scientific and Technical Conference on Security Systems-2011, Moscow, October 27, 2011, Moscow: Acad. State Fire Service of the Ministry of Emergency Situations of Russia, 2011, pp. 166–169.

  35. Gundar, S.V., Denisov, A.N., and Trifonov, N.Ya., Acceptable forest fire risk, Pozharovzryvobezopasnost’, 2009, vol. 18, no. 3, pp. 57–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Yu. Kataeva, M. N. Ilicheva or A. A. Loshchilov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kataeva, L.Y., Ilicheva, M.N. & Loshchilov, A.A. Mathematical Modeling for Extinguishing Forest Fires Using Water Capsules with a Thermoactive Shell. J Appl Mech Tech Phy 63, 1227–1242 (2022). https://doi.org/10.1134/S0021894422070069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894422070069

Keywords:

Navigation