Log in

On the Ab Initio DFT + U Calculations of the Physical Properties of a Compound with Strong Electron–Electron Correlations by the Case of KFeS2

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The magnetic and electronic properties of quasi-one-dimensional iron chalcogenide compound KFeS2 have been calculated within two DFT + U approaches based on the simplified LSDA + U approach and rotationally invariant LSDA + U approach. It is shown that the simplified LSDA + U approach with the single parameter \({{U}_{{{\text{eff}}}}}\) correctly describes the magnetic ground state but erroneously predicts the electronic properties. On the other hand, the rotationally invariant LSDA + U approach with two independent parameters U and J provides the correct description of electronic and magnetic properties of KFeS2 at once. By the comparison of ab initio results with experimental data on magnetic ground state and electronic properties, the values of the parameters U and J have been proposed for the correct description of physical properties of KFeS2 within the DFT + U approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. W. Bronger, A. Kyas, and P. Müller, J. Solid State Chem. 70, 262 (1987).

    Article  ADS  Google Scholar 

  2. Y. V. Lysogorskiy, R. M. Eremina, T. P. Gavrilova, O. V. Nedopekin, and D. A. Tayurskii, JETP Lett. 100, 652 (2015).

    Article  ADS  Google Scholar 

  3. S. M. Stishov and A. E. Petrova, JETP Lett. 114, 318 (2021).

    Article  Google Scholar 

  4. O. Young, G. Balakrishnan, M. R. Lees, and O. A. Petrenko, Phys. Rev. B 90, 094421 (2014).

  5. A. G. Kiiamov, Y. V. Lysogorskiy, F. G. Vagizov, L. R. Tagirov, D. A. Tayurskii, Z. Seidov, H.-A. Krugvon Nidda, V. Tsurkan, D. Croitori, A. Gunther, F. Mayr, and A. Loidl, Phys. Rev. B 98, 214411 (2018).

  6. A. Kiiamov, V. Tsurkan, D. Croitori, H.-A. Krugvon Nidda, Z. Seidov, H.-C. Wille, I. Sergueev, O. Leupold, D. Tayurskii, and L. Tagirov, Appl. Sci. 10, 7212 (2020).

    Article  Google Scholar 

  7. Z. Seidov, H.-A. Krug von Nidda, V. Tsurkan, I. G. Filippova, A. Gunther, T. P. Gavrilova, F. G. Vagizov, A. G. Kiiamov, L. R. Tagirov, and A. Loidl, Phys. Rev. B 94, 134414 (2016).

  8. E. Finazzi, C. D. Valentin, G. Pacchioni, and A. Selloni, J. Chem. Phys. 129, 15 (2008).

    Article  Google Scholar 

  9. Z. Bendeddouche, A. Zaoui, S. Kacimi, S. Abbaoui, A. Kadiri, and A. Boukortt, JETP Lett. 111, 210 (2020).

    Article  ADS  Google Scholar 

  10. E. A. Carter, Science (Washington, DC, U. S.) 321, 5890 (2008).

    Article  Google Scholar 

  11. S. A. Tuan, V. V. Daniyal, and H. Mirza, J. Solid State Chem. 290, 121522 (2020).

  12. A. Rohrbach, J. Hafner, and G. Kresse, J. Phys.: Condens. Matter 15, 979 (2003).

    ADS  Google Scholar 

  13. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  ADS  Google Scholar 

  14. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  15. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  16. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 169 (1996).

    Article  Google Scholar 

  17. MedeA (Mater. Des. Inc., Angel Fire, NM, USA, 2015).

  18. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 54, 3 (1998).

    Google Scholar 

  19. D. D. Sarma, P. Mahadevan, T. Saha-Dasgupta, S. Ray, and A. Kumar, Phys. Rev. Lett. 85, 12 (2000).

    Article  Google Scholar 

  20. J. Ferber, Y.-Z. Zhang, H. O. Jeschke, and R. Valent, Phys. Rev. Lett. 82, 165102 (2010).

  21. A. Nakanishi, T. Fukushima, H. Uede, and H. Katayama-Yoshida, Phys. C (Amsterdam, Neth.) 519, 168 (2015).

  22. I. Hase and T. Yanagisawa, Phys. Rev. B 76, 174103 (2007).

  23. H. Nakamura, N. Hayashi, N. Nakai, H. Nakamura, M. Okumura, and M. Machida, Phys. C (Amsterdam, Neth.) 469, 908 (2009).

  24. S. Nishioka, H. Kuriyaki, and K. Hirakawa, Synth. Met. 71, 1877 (1995).

    Article  Google Scholar 

  25. V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Condens. Matter 9, 4 (1997).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dr. Yury Lysogorskiy for fruitful and stimulated discussions.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-52-12068) and by Deutsche Forschungsgemeinschaft (German Research Foundation, grant no. KR 2254/3-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kiiamov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiiamov, A.G., Kuznetsov, M.D., Batulin, R.G. et al. On the Ab Initio DFT + U Calculations of the Physical Properties of a Compound with Strong Electron–Electron Correlations by the Case of KFeS2. Jetp Lett. 115, 98–101 (2022). https://doi.org/10.1134/S0021364022020023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022020023

Navigation