Log in

Impact of Impurity Phases and Superstoichiometric Iron on the Critical Temperature of Iron Chalcogenides

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The results of transport and magnetic measurements of iron chalcogenide crystals are analyzed taking into account the data of the chemical composition and impurity phases obtained by means of X-ray diffractometry. It has been found that ions of excess (superstoichiometric) iron, as well as impurity phases, produce stresses in the crystal lattice, and this leads to an increase in the superconducting transition temperature. The amount of impurity inclusions increases with time owing to spinodal decomposition, and they also promote the critical temperature rise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. Hartwig, N. Schäfer, M. Schulze, S. Landsgesell, D. Abou-Ras, Ch. G. F. Blum, S. Wurmehl, A. Sokolowski, B. Büchnerb, and K. Prokes, Phys. B: Condens. Matter 531, 102 (2018).

    Article  ADS  Google Scholar 

  2. J. P. Sun, K. Matsuura, G. Z. Ye, Y. Mizukami, M. Shimozawa, K. Matsubayashi, M. Yamashita, T. Watashige, S. Kasahara, Y. Matsuda, J.-Q. Yan, B. C. Sales, Y. Uwatoko, J.-G. Cheng, and T. Shibauchi, Nat. Commun. 7, 12146 (2016).

    Article  ADS  Google Scholar 

  3. Y. Mizuguchi, A. Miura, J. Kajitani, T. Hiroi, O. Miura, K. Tadanaga, N. Kumada, E. Magome, C. Moriyoshi, and Y. Kuroiwa, Sci. Rep. 5, 14968 (2015).

    Article  ADS  Google Scholar 

  4. T. J. Liu, X. Ke, B. Qian, J. Hu, D. Fobes, E. K. Vehstedt, H. Pham, J. H. Yang, M. H. Fang, L. Spinu, P. Schiffer, Y. Liu, and Z. Q. Mao, Phys. Rev. B 80, 174509 (2009).

    Article  ADS  Google Scholar 

  5. L. Li, Z. R. Yang, Z. T. Zhang, L. Pi, S. Tan, and Y. H. Zhang, New J. Phys. 12, 063019 (2010).

    Article  ADS  Google Scholar 

  6. M. Bendele, P. Babkevich, S. Katrych, S. N. Gvasaliya, E. Pomjakushina, K. Conder, B. Roessli, A. T. Boothroyd, R. Khasanov, and H. Keller, Phys. Rev. B 82, 212504 (2010).

    Article  ADS  Google Scholar 

  7. Sh. Cao, Sh. Shen, L. Chen, Sh. Yuan, B. Kang, and J. Zhang, J. Appl. Phys. 110, 033914 (2011).

    Article  ADS  Google Scholar 

  8. A. Kumar, A. Pal, R. P. Tandon, and V. P. S. Awana, Solid State Commun. 151, 1767 (2011).

    Article  ADS  Google Scholar 

  9. K. E. Ingle, K. R. Priolkar, A. Pal, R. A. Zargar, V. P. S. Awana, and S. Emura, Supercond. Sci. Technol. 28, 015015 (2015).

    Article  ADS  Google Scholar 

  10. D. Chareev, E. Osadchii, T. Kuzmicheva, J.-Y. Lin, S. Kuzmichev, O. Volkova, and A. Vasiliev, Cryst. Eng. Commun. 15, 1989 (2013).

    Article  Google Scholar 

  11. M. Nikolo, Am. J. Phys. 63, 57 (1995).

    Article  ADS  Google Scholar 

  12. R. Khasanov, M. Bendele, A. Amato, P. Babkevich, A. T. Boothroyd, A. Cervellino, K. Conder, S. N. Gvasaliya, H. Keller, H.-H. Klauss, H. Luetkens, V. Pomjakushin, E. Pomjakushina, and B. Roessli, Phys. Rev. B 80, 140511(R) (2009).

  13. T. J. Liu, J. Hu, B. Qian, et al., Nat. Mater. 9, 716 (2010).

    Article  ADS  Google Scholar 

  14. M. G. Rodriguez, G. Polla, C. P. Ramos, and C. Acha, J. Alloys Compd. 649, 1031 (2015).

    Article  Google Scholar 

  15. N. Zhang, Ch. Liu, J.-L. Zhao, T. Lei, J.-O. Wang, H.‑J. Qian, R. Wu, L. Yan, H.-Zh. Guo, and K. Ibrahim, Chin. Phys. B 25, 097402 (2016).

    Article  ADS  Google Scholar 

  16. S. B. Harris and R. P. Camata, Data Brief 27, 104778 (2019).

    Article  Google Scholar 

  17. R. Kumar and G. D. Varma, Phys. Status Solidi B 257, 1900952 (2020).

    Article  Google Scholar 

  18. N. Zhang, Ch. Liu, J.-L. Zhao, T. Lei, J.-O. Wang, H.‑J. Qian, R. Wu, L. Yan, H.-Zh. Guo, and K. Ibrahim, Chin. Phys. B 25, 097402 (2016).

    Article  ADS  Google Scholar 

  19. E. H. H. Lim, K. Y. Tan, J. Y. C. Liew, M. M. A. Kechik, S. A. Halim, S. K. Chen, K. B. Tan, and X. Qi, J. Supercond. Novel Magn. 28, 2839 (2015).

    Article  Google Scholar 

  20. E. J. W. Verwey and P. W. Haayman, Physica (Amsterdam, Neth.) 8, 979 (1941).

  21. F. Watz, J. Phys.: Condens. Matter 14, R285 (2002).

    ADS  Google Scholar 

  22. J. Rodriguez-Carvajal, Phys. B: Condens. Matter 192, 55 (1993).

    Article  ADS  Google Scholar 

  23. T. M. McQueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu, H. Zandbergen, Y. S. Hor, J. Allred, A. J. Williams, D. Qu, J. Checkelsky, N. P. Ong, and R. J. Cava, Phys. Rev. B 79, 014522 (2009).

    Article  ADS  Google Scholar 

  24. D. Balzar and S. Popović, J. Appl. Crystallogr. 29, 16 (1996).

    Article  Google Scholar 

Download references

Funding

I.I.G. acknowledges the support of the Russian Foundation for Basic Research (project no. 20-32-90063). D.A.Ch. and A.N.V. acknowledge the support of the Russian Foundation for Basic Research (project nos. 20-02-00561 and 17-29-10007), the Government of Russian Federation (agreement no. 02.A03.21.0006, program no. 211), and Kazan Federal University. The X-ray diffraction studies performed by A.G.K. were supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 0671-2020-0050, state assignment for Kazan Federal University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Gimazov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gimazov, I.I., Kiiamov, A.G., Lyadov, N.M. et al. Impact of Impurity Phases and Superstoichiometric Iron on the Critical Temperature of Iron Chalcogenides. Jetp Lett. 113, 454–460 (2021). https://doi.org/10.1134/S0021364021070067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021070067

Navigation