Log in

Local Crystallization of a Resonant Amorphous Silicon Nanoparticle for the Implementation of Optical Nanothermometry

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Local optical heating and Raman nanothermometry based on resonant silicon particles provide a new promising platform for a number of key nanophotonics applications associated with thermally induced processes at the nano- and microscale. In this work, the crystallization of amorphous silicon nanodisks with optical resonances caused by local optical heating has been studied. The crystallization process is controlled by Raman microspectroscopy. The crystallization temperature of a single nanodisk of about 900 K has been determined under the action of a strongly focused cw laser beam. As a result, an annealed resonant silicon nanoparticle has allowed controlled and reversible heating in the temperature range of 300–1000 K with the possibility of map** the heating region with submicron spatial resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, Science 354 (6314), aag2472 (2016).

    Google Scholar 

  2. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, Nat. Commun. 4, 1527 (2013).

    Article  Google Scholar 

  3. I. S. Sinev, A. A. Bogdanov, F. E. Komissarenko, K. S. Frizyuk, M. I. Petrov, I. S. Mukhin, S. V. Makarov, A. K. Samusev, A. V. Lavrinenko, and I. V. Iorsh, Laser Photon. Rev. 11, 1700168 (2017).

    Article  ADS  Google Scholar 

  4. A. B. Evlyukhin and S. I. Bozhevolnyi, JETP Lett. 83, 653 (2006).

    Article  Google Scholar 

  5. S. V. Makarov, S. I. Kudryashov, I. S. Mukhin, A. Mozharov, V. A. Milichko, A. E. Krasnok, and P. E. Belov, Nano Lett. 15, 6187 (2015).

    Article  ADS  Google Scholar 

  6. M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D. Choi, I. Staude, A. E. Miroshnichenko, D. Neshev, A. A. Fedyanin, and Y. S. Kivshar, Nano Lett. 15, 6985 (2015).

    Article  ADS  Google Scholar 

  7. S. V. Makarov, A. S. Zalogina, M. Tajik, D. A. Zuev, M. V. Rybin, A. A. Kuchmizhak, S. Juodkazis, and Y. S. Kivshar, Laser Photon. Rev. 11, 1700108 (2017).

    Article  ADS  Google Scholar 

  8. M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, Nano Lett. 14, 6488 (2014).

    Article  ADS  Google Scholar 

  9. S. V. Makarov, M. I. Petrov, U. Zywietz, V. A. Milichko, D. A. Zuev, N. Lopanitsyna, A. Kuksin, I. A. Mukhin, G. P. Zograf, E. Ubyivovk, D. Smirnova, S. Starikov, B. N. Chichkov, and Y. S. Kivshar, Nano Lett. 17, 3047 (2017).

    Article  ADS  Google Scholar 

  10. L. Wang, S. Kruk, H. Tang, T. Li, I. Kravchenko, D. N. Neshev, and Y. S. Kivshar, Optica 3, 1504 (2016).

    Article  Google Scholar 

  11. M. I. Tribelsky, J. Geffrin, A. Litman, C. Eyraud, and F. Moreno, Sci. Rep. 5, 12288 (2015).

    Article  ADS  Google Scholar 

  12. J. Proust, F. Bedu, B. Gallas, I. Ozerov, and N. Bonod, ACS Nano 10, 7761 (2016).

    Article  Google Scholar 

  13. O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, Nano Lett. 17, 4421 (2017).

    Article  ADS  Google Scholar 

  14. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, Phys. Rev. B 82, 045404 (2010).

    Article  ADS  Google Scholar 

  15. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, Opt. Express 19, 4815 (2011).

    Article  ADS  Google Scholar 

  16. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007), p. 224.

    Book  Google Scholar 

  17. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, Sci. Rep. 2, 492 (2012).

    Article  Google Scholar 

  18. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, Nano Lett. 12, 3749 (2012).

    Article  ADS  Google Scholar 

  19. G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, Nano Lett. 17, 2945 (2017).

    Article  ADS  Google Scholar 

  20. M. Balkanski, R. F. Wallis, and E. Haro, Phys. Rev. B 28, 1928 (1983).

    Article  ADS  Google Scholar 

  21. V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, V. V. Vinogradov, S. V. Makarov, and P. A. Belov, Laser Photon. Rev. 12 (1) (2018).

    Google Scholar 

  22. M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, Appl. Phys. Lett. 111, 243103 (2017).

    Article  ADS  Google Scholar 

  23. A. P. Slobozhanyuk, A. N. Poddubny, I. S. Sinev, A. K. Samusev, Y. F. Yu, A. I. Kuznetsov, A. E. Miroshnichenko, and Y. S. Kivshar, Laser Photon. Rev. 10, 656 (2016).

    Article  ADS  Google Scholar 

  24. R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. K. Samusev, Y. S. Kivshar, B. S. Luk’yanchuk, and A. I. Kuznetsov, Nano Lett. 15, 2137 (2015).

    Article  ADS  Google Scholar 

  25. R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. S. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, Nat. Commun. 7, 10362 (2016).

    Article  ADS  Google Scholar 

  26. G. Baffou and R. Quidant, Laser Photon. Rev. 7, 171 (2013).

    Article  ADS  Google Scholar 

  27. Z. Iqbal and S. Veprek, J. Phys. C: Solid State Phys. 15, 377 (1982).

    Article  ADS  Google Scholar 

  28. M. K. Hatalis and D. W. Greve, J. Appl. Phys. 63, 2260 (1988).

    Article  ADS  Google Scholar 

  29. U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, Nat. Commun. 5, 3402 (2014).

    Article  ADS  Google Scholar 

  30. D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).

    Article  ADS  Google Scholar 

  31. S. V. Makarov, I. S. Sinev, V. A. Milichko, F. E. Komissarenko, D. A. Zuev, E. V. Ushakova, I. S. Mukhin, Y. F. Yu, A. I. Kuznetsov, P. A. Belov, I. V. Iorsh, A. N. Poddubny, A. K. Samusev, and Yu. S. Kivshar, Nano Lett. 18, 535 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Makarov.

Additional information

Original Russian Text © G.P. Zograf, Y.F. Yu, K.V. Baryshnikova, A.I. Kuznetsov, S.V. Makarov, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 107, No. 11, pp. 732–738.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zograf, G.P., Yu, Y.F., Baryshnikova, K.V. et al. Local Crystallization of a Resonant Amorphous Silicon Nanoparticle for the Implementation of Optical Nanothermometry. Jetp Lett. 107, 699–704 (2018). https://doi.org/10.1134/S0021364018110140

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018110140

Navigation