Log in

Effect of Isomorphous Substitutions in Calcium Triphosphate, Ca3(PO4)2, on the Microstructural and Chemical Properties of Phosphate Cements Prepared from It

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper reports on the preparation and properties of phosphate materials for medical applications: brushite (CaHPO4·2H2O) or monetite (CaHPO4) based cements prepared from β- and α-Ca3(PO4)2 (TCP) via isomorphous substitutions of Na+ or K+ for Ca2+ and of \({\text{SiO}}_{4}^{{4 - }}\) or \({\text{SO}}_{4}^{{2 - }}\) for \({\text{PO}}_{4}^{{2 - }}\). The mixing liquid used to prepare phosphate cements from substituted TCP was orthophosphoric acid or H2O, and TCP was mixed with dry Ca(H2PO4)2·H2O. Isomorphous substitutions of Na+ and K+ for Ca2+ ions and \({\text{SiO}}_{4}^{{4 - }}\) and \({\text{SO}}_{4}^{{2 - }}\) for \({\text{PO}}_{4}^{{2 - }}\) were confirmed by scanning electron microscopy, X-ray microanalysis, and X-ray diffraction. It has been shown that, as a result of hardening of cement pastes with the use of different mixing liquids, one can obtain materials differing in microstructure, in which brushite or monetite prevails, depending on the TCP phase used in the preparation of the cement. In addition, we have studied interaction of the cements with water for a long time (16 days). The pH of the aqueous medium has been shown to vary from 5 to 7.5. This pH range is favorable for medical applications of the phosphate materials studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Gao, C., Peng, S., Feng, P., and Shuai, C., Bone biomaterials and interactions with stem cells, Bone Res., 2017, vol. 5, p. 17059. https://doi.org/10.1038/boneres.2017.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Putlyaev, V.I. and Safronova, T.V., Chemical transformations of calcium phosphates during production of ceramic materials on their basis, Inorg. Mater., 2019, vol. 55, no. 13, pp. 1328–1341. https://doi.org/10.1134/S0020168519130028

    Article  CAS  Google Scholar 

  3. Hench, L.L., Bioceramics, J. Am. Ceram. Soc., 1998, vol. 81, no. 7, pp. 1705–1728. https://doi.org/10.1111/j.1151-2916.1998.tb02540.x

    Article  CAS  Google Scholar 

  4. Fernandez de Grado, G., Keller, L., Idoux-Gillet, Y., Wagner, Q., Musset, A.M., Benkirane-Jessel, N., Bornert, F., and Offner, D., Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management, J. Tissue Eng., 2018, vol. 9, p. 2041731418776819. https://doi.org/10.1177/2041731418776819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bohner, M., Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements, Injury, 2000, vol. 31, no. 4, pp. 37–47. https://doi.org/10.1016/s0020-1383(00)80022-4

    Article  PubMed  Google Scholar 

  6. Giulia, B., Sourav, P., Lucia, Sch., Stefano, S., Lisa, B., and Massimo, Del F., The impact of the bioceramic scaffolds on bone regeneration in preclinical in vivo studies: a systematic review, Materials, 2020, vol. 13, no. 7, pp. 1500–1526. https://doi.org/10.3390/ma13071500

    Article  CAS  Google Scholar 

  7. Wang, C., Xue, Y., Lin, K., Lu, J., Chang, J., and Sun, J., The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β‑CaSiO3/β-Ca3(PO4)2 composite bioceramics, Acta Biomater., 2012, vol. 8, no. 1, pp. 350–360. https://doi.org/10.1016/j.actbio.2011.08.019

    Article  CAS  PubMed  Google Scholar 

  8. Matsumoto, N., Yoshida, K., Hashimoto, K., and Toda, Y., Dissolution mechanisms of β-tricalcium phosphate doped with monovalent metal ions, J. Ceram. Soc. Jpn., 2010, vol. 118, no. 1378, pp. 451–457. https://doi.org/10.2109/jcersj2.118.451

    Article  CAS  Google Scholar 

  9. Goldberg, M.A., Fomin, A.S., Murzakhanov, F.F., Makshakova, O.N., Donskaya, N.O., Antonova, O.S., Gnezdilov, O.I., Mikheev, I.V., Knotko, A.V., Kudryavtsev, E.A., Akhmedova, S.A., Sviridova, I.K., Sergeeva, N.S., Mamin, G.V., Barinov, S.M., Gafurov, M.R., and Komlev, V.S., The improved textural properties, thermal stability, and cytocompatibility of mesoporous hydroxyapatite by Mg2+ do**, Mater. Chem. Phys., 2022, vol. 289, p. 126461. https://doi.org/10.1016/j.matchemphys.2022.126461

    Article  CAS  Google Scholar 

  10. Komlev, V.S., Fadeeva, I.V., Gurin, A.N., Kovaleva, A.S., Smirnov, V.V., Gurin, N.A., and Barinov, S.M., Effect of the concentration of carbonate groups in a carbonate hydroxyapatite ceramic on its in vivo behavior, Inorg. Mater., 2009, vol. 45, no. 3, pp. 329–334. https://doi.org/10.1134/S0020168509030194

    Article  CAS  Google Scholar 

  11. Safronova, T.V. and Putlyaev, V.I., Powder systems for calcium phosphate ceramics, Inorg. Mater., 2017, vol. 53, no. 1, pp. 17–26. https://doi.org/10.1134/S0020168516130057

    Article  CAS  Google Scholar 

  12. Orlov, N.K., Kiseleva, A.K., Mil’kin, P.A., Evdokimov, P.V., Putlyaev, V.I., and Liu, Y., Experimental study of the high-temperature region of the Ca3(PO4)2–CaKPO4–CaNaPO4 system, Russ. J. Phys. Chem., 2021, vol. 95, no. 7, pp. 1302–1306. https://doi.org/10.1134/S0036024421070190

    Article  CAS  Google Scholar 

  13. Knotko, A.V., Musoev, Sh.A., and Umirov, U.T., On the feasibility of controlling the micro- and nanostructures of calcium phosphate cements through cation and anion solid-state substitutions, Perspektivnye tekhnologii i materialy. Materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii (Promising Technologies and Materials: Proc. Science and Technology Conf.), Sevastopol: SevGU, 2021, pp. 132–136.

  14. Ando, J. and Matsuno, S., Ca3(PO4)2–CaNaPO4 system, Bull. Chem. Soc. Jpn., 1968, vol. 41, no. 2, pp. 342–347. https://doi.org/10.1246/bcsj.41.342

    Article  CAS  Google Scholar 

  15. Fix, W., Heymann, H., and Heinke, R., Subsolidus relations in the system 2CaO·SiO2–3CaO·P2O5, J. Am. Ceram. Soc., 1969, vol. 52, no. 6, pp. 346–347. https://doi.org/10.1111/j.1151-2916.1969.tb11948.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Knotko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musoev, S.A., Knotko, A.V. Effect of Isomorphous Substitutions in Calcium Triphosphate, Ca3(PO4)2, on the Microstructural and Chemical Properties of Phosphate Cements Prepared from It. Inorg Mater 59, 385–393 (2023). https://doi.org/10.1134/S0020168523040076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523040076

Keywords:

Navigation