Log in

Local Structure of Highly Imperfect Fluorite-Derived R2TiO5-Based (R = Yb, Lu) Solid Solutions

  • Published:
Inorganic Materials Aims and scope

Abstract

Order–disorder structural transformations in xR2O3·(1 – х)TiO2 (R = Yb, Lu; х = 0.5–0.6) solid solutions with a highly imperfect fluorite-derived structure at 1600°C have been studied using monochromatic synchrotron X-ray diffraction and Raman spectroscopy. The results demonstrate that the synthesis process leads to the formation of two cubic phases identical in composition: a disordered fluorite-like (F) phase (Fm3m) and an ordered pyrochlore-like (P) phase (Fd3m), which is coherent with the disordered phase and consists of nanoscale (<100 Å) and nanocrystalline domains. The lattice parameters of these phases have been determined. The stability range of the solid solutions in the systems studied is 0.5 ≤ x ≤ 0.55. In the samples containing 0.55Yb2O3 and 0.5Lu2O3, the P-phase consists of nanodomains. The Raman spectra of the Yb2TiO5- and Lu2TiO5-based solid solutions contain broad bands at low and high frequencies, with peaks at 101, 175, 290, 346, 384, and 727 (115, 176, 320, and 745) cm–1, which correspond to the P- and F-phases, respectively. The formation of pyrochlore-like phases with different degrees of order in a fluorite matrix is due to the internal stress induced by the high density of structural defects in their unit cells. The materials obtained in this study have a large specific surface area and can be used as catalysts and catalyst supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Knauth, P. and Tuller, H.L., Solid-state ionics: roots, status, and future prospects, J. Am. Ceram. Soc., 2002, vol. 85, no. 7, pp. 1654–1680.

    Article  CAS  Google Scholar 

  2. Kharton, V.V., Marques, F.M.B., and Atkinson, A., Transport properties of solid oxide electrolyte ceramics: a brief review, Solid State Ionics, 2004, vol. 174, nos. 1–4, pp. 135–149.

    Article  CAS  Google Scholar 

  3. Tuller, H.L., Ionic conduction in nanocrystalline materials, Solid State Ionics, 2000, vol. 131, pp. 143–157.

    Article  CAS  Google Scholar 

  4. Tuller, H.L., Mixed ionic–electronic conduction in a number of fluorite and pyrochlore compounds, Solid State Ionics, 1992, vol. 52, nos. 1–3, pp. 135–146.

    Article  CAS  Google Scholar 

  5. Chen, H., Kao, C.-H., Lin, C.W., and Liao, C.H., Material, electrical, and optical characterizations of high-K Sm2TiO5 dielectric deposited on polycrystalline silicon, Ferroelectrics, 2012, vol. 434, no. 1, pp. 58–66.

    Article  CAS  Google Scholar 

  6. Cao, X.Q., Vassen, R., and Stoever, D., Ceramic materials for thermal barrier coatings, J. Eur. Ceram. Soc., 2004, vol. 24, pp. 1–10.

    Article  CAS  Google Scholar 

  7. Pan, T.M., Huang, M.D., Lin, W.Y., and Wu, M.H., Aurea biosensor based on pH-sensitive Sm2TiO5 electrolyte–insulator–semiconductor, Anal. Chim. Acta, 2010, vol. 669, nos. 1–2, pp. 68–74.

    Article  CAS  Google Scholar 

  8. Bulatov, A.V., Izakovich, E.I., Khidekel’, M.G., Lyashenko, L.P., Shcherbakova, L.G., Dyumaev, K.M., Rogovik, D.V., Dzvinka, R.I., Zagorevskii, D.V., Shein, S.M., Bek, M.T., Tot, E., and Io, F., USSR Inventor’s Certificate no. 1241674, 1986.

  9. Sinha, A. and Sharma, B.P., Development of dysprosium titanate based ceramics, J. Am. Ceram. Soc., 2005, vol. 88, no. 4, pp. 1064–1066.

    Article  CAS  Google Scholar 

  10. Kim, H.S. et al., Characteristics of GdxMyOz (M = Ti, Zr or Al) as a burnable absorber, J. Nucl. Mater., 2008, vol. 372, nos. 2–3, pp. 340–349.

    Article  CAS  Google Scholar 

  11. Whittle, K.R., Lumpkin, G.R., Blackford, M.G., Aughterson, R.D., Smith, K.L., and Zaluzec, N.J., Ion-beam irradiation of lanthanum compounds in the systems La2O3–Al2O3 and La2O3–TiO2, J. Solid State Chem., 2010, vol. 183, no. 10, pp. 2416–2420.

    Article  CAS  Google Scholar 

  12. Lumpkin, G.R., Pruneda, M., Rios, S., Smith, K.L., Trachenko, K., Whittle, K.R., and Zaluzec, N.J., Nature of the chemical bond and prediction of radiation tolerance in pyrochlore and defect fluorite compounds, J. Solid State Chem., 2007, vol. 180, pp. 1512–1518.

    Article  CAS  Google Scholar 

  13. Aughterson, R.D., Lumpkin, G.R., Ionescu, M., Rayes, M., Gault, B., Whittle, K.R., Smith, K.L., and Cairney, J.M., Ion irradiation resistance of orthorhombic Ln2TiO5 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb and Dy) series, J. Nucl. Mater., 2015, vol. 467, pp. 683–691.

    Article  CAS  Google Scholar 

  14. Aughterson, R.D., Lumpkin, G.R., Rayes, M., Gault, B., Baldo, P., Ryan, E., Whittle, K.R., Smith, K.L., and Cairney, J.M., The influence of crystal structure on ion-irradiation tolerance in the Sm(x)Yb(2 – x)TiO5 series, J. Nucl. Mater., 2016, vol. 471, pp. 17–24.

    Article  CAS  Google Scholar 

  15. Aughterson, R.D., Lumpkin, G.R., Smith, K.L., Zhang, Z., Sharma, N., and Cairney, J.M., The crystal structure and corresponding ion-irradiation response for the Tb(x)Yb(2 – x)TiO5 series, Ceram. Int., 2018, vol. 44, pp. 511–519.

    Article  CAS  Google Scholar 

  16. Kachapina, L.M., Lyashenko, L.P., Kichigina, G.A., Shcherbakova, L.G., and Borod’ko, Yu.G., Raman scattering study of structural transitions in the TiO2−Sc2O3 system, Dokl. Akad. Nauk SSSR, 1979, vol. 244, no. 6, pp. 1402–1406.

    CAS  Google Scholar 

  17. Lyashenko L.P., Nikonov Yu.P., Raevskii A.V., and Shcherbakova L.G., Formation mechanisms of fluorite-like phases in the TiO2−Y2O3(Er2O3, Sc2O3) systems, Materialovedenie, 1999, no. 1, pp. 29–33.

  18. Lyashenko, L.P., Shcherbakova, L.G., Belov, D.A., and Knotko, A.V., Electrical conductivity of nanostructured fluorite-like Sc4Ti3O12, Inorg. Mater., 2009, vol. 45, no. 5, pp. 543–549.https://doi.org/10.1134/S002016850905015X

    Article  CAS  Google Scholar 

  19. Lyashenko, L.P., Shcherbakova, L.G., Kulic, E.S., Svetogorov, R.D., and Zubavichus, Ya.V., Synchrotron X-ray diffraction study of nanostructured Er2O3–TiO2 (50–60 mol % Er2O3) solid solutions, Inorg. Mater., 2013, vol. 49, no. 12, pp. 1213–1219.https://doi.org/10.7868/S0002337X13120105

    Article  CAS  Google Scholar 

  20. Lyashenko, L.P., Shcherbakova, L.G., Kulik, E.S., Svetogorov, R.D., and Zubavichus, Ya.V., Defect structure of xY2O3·(1 − x)TiO (x = 0.5–0.58) solid solutions, Inorg. Mater., 2014, vol. 50, no. 12, pp. 1230–1234.https://doi.org/10.1134/S0020168514120152

    Article  CAS  Google Scholar 

  21. Lyashenko, L.P., Shcherbakova, L.G., Kulik, E.S., Svetogorov, R.D., and Zubavichus, Ya.V., Defect structure of xSc2O3·(1 − x)TiO2 (x = 0.4–0.5) solid solutions, Inorg. Mater., 2015, vol. 51, no. 2, pp. 158–162.https://doi.org/10.1134/S0020168515020120

    Article  CAS  Google Scholar 

  22. Lyashenko, L.P., Shcherbakova, L.G., Karelin, A.I., Smirnov, V.A., Kulik, E.S., Svetogorov, R.D., and Zubavichus, Ya.V., Synthesis, X-ray structure analysis, and Raman spectroscopy of R2TiO5-based (R = Sc, Y) solid solutions, Inorg. Mater., 2016, vol. 52, no. 5, pp. 483–489.https://doi.org/10.1134/S0020168516050095

    Article  CAS  Google Scholar 

  23. Lyashenko, L.P., Shcherbakova, L.G., Tartakovskii, I.I., Maksimov, A.A., Svetogorov, R.D., Zubavichus, Ya.V., and Kolbanev, I.V., Order–disorder structural transformations in highly imperfect fluorite-derived R2TiO5-based (R = Tm, Er) solid solutions, Inorg. Mater., 2020, vol. 56, no. 2, pp. 190–197. https://doi.org/10.1134/S0020168520020119

    Article  CAS  Google Scholar 

  24. Aughterson, R.D., Lumpkin, G.R., Reyes, M., Sharma, N., Ling, C.D., Gault, B., Smith, K.L., Avdeev, M., and Cairney, J.M., Crystal structures of orthorhombic, hexagonal, and cubic compounds of the Sm(x)Yb(2 – x)TiO5 series, J. Solid State Chem., 2014, vol. 213, pp. 182–192.

    Article  CAS  Google Scholar 

  25. Lau, G.C., McQueen, T.M., Huang, Q., Zandbergen, H.W., and Cava, R.J., Long- and short-range order in stuffed titanate pyrochlores, J. Solid State Chem., 2008, vol. 181, no. 1, pp. 45–50.

    Article  CAS  Google Scholar 

  26. Lau, G.C., Ueland, B.G., Dahlberg, M.L., Freitas, R.S., Huang, Q., Zandbergen, H.W., Schiffer, P., and Cava, R.J., Structural disorder and properties of stuffed pyrochlore Ho2TiO5, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 76, paper 054430.

  27. Svetogorov, R.D., Dorovatovskii, P.V., and Lazarenko, V.A., Belok/XSA diffraction beamline for studying crystalline samples at Kurchatov Synchrotron Radiation Source, Cryst. Res. Technol., 2020, vol. 55, no. 5, paper 1900184.

  28. Svetogorov, R.D., Dionis—diffraction open integration software, Computer Program State Registration Certificate no. 2018660965.

  29. Powder Diffraction File, Swarthmore: Joint Committee on Powder Diffraction Standards, card nos. 33-1457, 17-0454.

  30. Diagrammy sostoyaniya sistem tugoplavkikh okislov: Spravochnik (Phase Diagrams of Refractory Oxide Systems: A Handbook), Galakhov, F.Ya., Ed., Leningrad: Nauka, 1985, issue 5. part 1.

  31. Blanchard, P.E.R., Liu, S., Kennedy, B.J., and Ling, C.D., Investigating the local structure of lanthanoid hafnates Ln2Hf2O7 via diffraction and spectroscopy, J. Phys. Chem. C, 2013, vol. 117, pp. 2266–2273.

    Article  CAS  Google Scholar 

  32. Lyashenko, L.P., Shcherbakova, L.G., Tartakovskii, I.I., Maksimov, A.A., Svetogorov, R.D., and Zubavichus, Ya.V., Order–disorder structural transformations in nanocrystalline highly imperfect Gd2MO5 (M = Zr and Hf) fluorite derivatives, Inorg. Mater, 2018, vol. 54, no. 3, pp. 245–252.https://doi.org/10.1134/S0020168518030093

    Article  CAS  Google Scholar 

  33. Michel, D., Pererez, M., Jorba, Y., and Collongues, R., Study by Raman spectroscopy of order–disorder phenomena occurring in some binary oxides with fluorite-related structures, J. Raman Spectrosc., 1976, vol. 5, pp. 163–180.

    Article  CAS  Google Scholar 

  34. Aleksandrov, V.I., Voron’ko, Yu.K., Ignat’ev, B.V., Lomonova, E.E., Osiko, V.V., and Sobol’, A.A., A Raman scattering study of structural transformations in zirconia- and hafnia-based solid solutions, Fiz. Tverd. Tela (Leningrad), 1978, vol. 20, no. 2, pp. 528–534.

    CAS  Google Scholar 

  35. Nomura, K., Mizutani, Y., Kawai, M., Nakamura, Y., and Yamamoto, O., Aging and Raman scattering study of scandia and yttria doped zirconia, Solid State Ionics, 2000, vol. 132, pp. 235–239.

    Article  CAS  Google Scholar 

  36. Glerup, M., Nielsen, O.F., and Poulsen, F.W., The structural transformation from the pyrochlore structure, A 2 B 2O7, to the fluorite structure, A 2O2, studied by Raman spectroscopy and defect chemistry modeling, J. Solid State Chem., 2001, vol. 160, no. 1, pp. 25–32.

    Article  CAS  Google Scholar 

  37. Farmer, J.M., Boatner, L.A., Chakoumakos, B.C., Du, M.-H., Lance, M.J., Rawn, C.J., and Bryan, J.C., Structural and crystal chemical properties of rare-earth titanate pyrochlores, J. Alloys Compd., 2014, vol. 605, pp. 63–70.

    Article  CAS  Google Scholar 

  38. Lyashenko, L.P., Shcherbakova, L.G., and Glushkova, V.B., Interdiffusion in the TiO2–Sc2O3 system, Dokl. Akad. Nauk SSSR, 1977, vol. 233, no. 4, pp. 623–626.

    CAS  Google Scholar 

  39. Lyashenko, L.P., Physical and chemical effects accompanying diffusion processes in the TiO2–M2O3 (M = Al, Sc, Y, Er) systems, Extended Abstract of Cand. Sci. (Phys.–Math.) Dissertation, Chernogolovka, 1980.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Lyashenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyashenko, L.P., Shcherbakova, L.G., Kolbanev, I.V. et al. Local Structure of Highly Imperfect Fluorite-Derived R2TiO5-Based (R = Yb, Lu) Solid Solutions. Inorg Mater 58, 379–388 (2022). https://doi.org/10.1134/S0020168522040100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522040100

Keywords:

Navigation