Log in

Low-temperature crystallization of mechanically amorphized graphite

  • Published:
Inorganic Materials Aims and scope

Abstract

Mechanically amorphized graphite partially crystallizes at 1400°C, which is substantially lower than the crystallization temperature of amorphous carbon (soot). The extent of crystallization as a function of milling time shows a maximum in parallel with the maximum in the concentration of iron carbides, which catalyze the low-temperature crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nikiel, L. and Jagodzinski, P.W., Raman Spectroscopic Characterization of Graphites: A Revaluation of Spectra Structure Correlation, Carbon, 1993, vol. 31, pp. 1313–1317.

    Article  CAS  Google Scholar 

  2. Nakamizo, M., Honda, H., and Inagaki, M., Raman Spectra of Ground Natural Graphite, Carbon, 1978, vol. 16, pp. 281–286.

    Article  CAS  Google Scholar 

  3. Chuparova, L.D., Derbenev, V.A., Kirillin, N.S., and Fialkov, A.S., Materialy III mezhdunarodnoi konferentsii “Uglerod: Fundamentals’nye problemy nauki, materialovedenie, tekhnologiya” (Proc. III Int. Conf. Carbon: Fundamental Scientific Aspects, Materials Research, and Technology). Moscow, 2003, p. 234.

  4. Antsiferov, V.N. and Grevnov, L.M., Fullerenes in FeBased Powders, Materialy II mezhdunarodnoi konferentsii “Uglerod: Fundamentals’nye problemy nauki, materialovedenie, tekhnologiya” (Proc. II Int. Conf. Carbon: Fundamental Scientific Aspects, Materials Research, and Technology), Moscow, 2003, p. 46.

  5. Rouzand, J.N. and Oberlin, A., Structure, Microtexture, and Optical Properties of Anthracene and Saccharose-Based Carbons, Carbon, 1989, vol. 27, pp. 517–519.

    Google Scholar 

  6. Avvakumov, E.G., Potkin, A.R., and Samarin, O.I., USSR Inventors’s Certificate no. 975068, Byull. Izobret., 1982, no. 43.

  7. Chechernikov, V.I., Fizicheskie metody issledovaniya v khimii (Physical Characterization Techniques in Chemistry), Moscow: Vysshaya Shkola, 1987.

    Google Scholar 

  8. Streletskii, A.N., Mechanically Activated Fine-Particle Graphite: Fabrication Aspects and Structure, Materialy II mezhdunarodnoi konferentsii “Uglerod: Fundamentals’nye problemy nauki, materialovedenie, tekhnologiya” (Proc. II Int. Conf. Carbon: Fundamental Scientific Aspects, Materials Research, and Technology), Moscow, 2003, p. 208.

  9. Pocsik, I., Hund Hausen, M., Koos, M., and Ley, L., Origin of the D-Peak in the Raman Spectrum of Microcrystalline Graphite, J. Non-Cryst. Solids, 1998, pp. 227–230.

  10. Brandt, N.B., Chudinov, S.M., and Ponomarev, Ya.G., Semimetals: Graphite and Its Compounds, Mod. Probl. Condens. Matter Sci., 1988, vol. 20, no. 10, pp. 152–157.

    Google Scholar 

  11. Bokhonov, B.B. and Korchagin, M.A., The Formation of Graphite Encapsulated Nanoparticles Metal during Mechanical Activation and Annealing of Soot with Iron and Nickel, J. Alloys Compd., 2002, vol. 333, pp. 308–320.

    Article  CAS  Google Scholar 

  12. Cabiocs’h, T., Thune, E., and Jaouen, M., Carbon-Onion Thin-Film Synthesis onto Silica Substrates, Chem. Phys. Lett., 2000, vol. 320, pp. 202–205.

    Google Scholar 

  13. Welham, N.J. and Williams, J.S., Extended Milling of Graphite and Activated Carbon, Carbon, 1998, vol. 36, pp. 111–119.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.V. Surov, O.I. Lomovskii, V.V. Boldyrev, 2006, published in Neorganicheskie Materialy, 2006, Vol. 42, No. 2, pp. 151–155.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surov, D.V., Lomovskii, O.I. & Boldyrev, V.V. Low-temperature crystallization of mechanically amorphized graphite. Inorg Mater 42, 116–120 (2006). https://doi.org/10.1134/S002016850602004X

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016850602004X

Keywords

Navigation