Log in

Numerical Simulation of the Interaction of a Mach Wave and a Boundary Layer on a Flat Plate

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

Using direct numerical simulation, a problem of the interaction of a Mach wave with a boundary layer on a flat plate, streamlined by a supersonic perfect gas flow at the Mach number M = 2.5 is considered. The influence of the intensity of the incident Mach wave on the laminar-turbulent transition (LTT) is studied. It is shown that the incidence of a Mach wave with an amplitude of 5%, simulating the relative thickness of the roughness on the side wall of the wind tunnel, on the boundary layer leads to the formation of a turbulent wedge in the boundary layer on a flat plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Bykov, L.V., Molchanov, A.M., Yanyshev, D.S., and Platonov, I.M., High Temp., 2018, vol. 56, no. 1, p. 109.

    Article  Google Scholar 

  2. Gorskii, V.V., High Temp., 2022, vol. 60, no. 5, p. 645.

    Article  Google Scholar 

  3. Gaponov, S.A. and Maslov, A.A., Razvitie vozmushchenii v szhimaemykh potokakh (Development of Disturbances in Compressible Flows), Novosibirsk: Nauka, 1980.

  4. Laufer, J., Aerospase Sci., 1961, vol. 28, no. 9, p. 685.

    Article  Google Scholar 

  5. Kendall, J.M., AIAA J., 1975, vol. 13, no. 3, p. 290.

    Article  ADS  Google Scholar 

  6. Pridanov, V.G., Kharitonov, A.M., and Chernykh, V.V., Fluid Dyn., 1974, no. 1, p. 126.

  7. Borovoi, V.Ya., Egorov, I.V., Mosharov, V.E., Skuratov, A.S., and Radchenko, V.N., Ekstremal’nyi nagrev tel v giperzvukovom potoke (Extreme Heating of Bodies in a Hypersonic Flow), Moscow: Nauka, 2018.

  8. Egorov, I.V., Zyong, N.H., Nguen, N.C., and Pal’chekovskaya, N.V., Dokl. Ross. Akad. Nauk, Fiz., Tekh. Nauki, 2022, vol. 504, no. 1, p. 36.

    Google Scholar 

  9. Meersman, J.A., Hader, C., and Fasel, H.F., AIAA J., 2021, vol. 59, no. 6, p. 1940.

    Article  ADS  Google Scholar 

  10. Dwivedi, A., Hildebrand, N., Nichols, J.W., Candler, G.V., and Jovanovic, M.R., Phys. Rev. Fluids, 2020, vol. 5, no. 6, p. 063904.

    Article  ADS  Google Scholar 

  11. Cerminara, A. and Sandham, N., J. Fluid Mech., 2020, vol. 896, p. A21.

    Article  ADS  Google Scholar 

  12. Egorov, I.V., Novikov, A.V., and Fedorov, A.V., Comput. Math. Math. Phys., 2017, vol. 57, no. 8, p. 1335.

    Article  MathSciNet  Google Scholar 

  13. Vaganov, A.V., Ermolaev, Yu.G., Kolosov, G.L., Kosinov, A.D., Panina, A.V., Semenov, N.V., and Yatskikh, A.A., Thermophys. Aeromech., 2016, vol. 23, no. 1, p. 43.

    Article  ADS  Google Scholar 

  14. Pate, S.R., On boundary-layer transition in supersonic-hypersonic wind tunnels: Theory and application, AEDC-TR-77-107, 1978.

  15. Vaganov, A.V., Ermolaev, Yu.G., Kolosov, G.L., Kosinov, A.D., Panina, A.V., and Semenov, N.V., Vestn. Novosib. Gos. Univ., Ser. Fiz., 2014, vol. 9, no. 1, p. 29.

    Google Scholar 

  16. Vaganov, A.V., Ermolaev, Yu.G., Kosinov, A.D., Semenov, N.V., and Shalaev, V.I., Tr. Mosk. Fiz.-Tekh. Inst., 2013, vol. 5, no. 3, p. 164.

    Google Scholar 

  17. Egorov, I.V., Din’ K.Kh., Nguen, N.K., and Pal’chekovskaya, N.V., Uch. Zap. TsAGI, 2021, vol. 52, no. 3, p. 18.

    Google Scholar 

  18. Din, Q.H., Egorov, I.V., and Fedorov, A.V., Uch. Zap. TsAGI, 2017, vol. 48, no. 4, p. 10.

    Google Scholar 

  19. Din, Q.H., Egorov, I.V., and Fedorov, A.V., Fluid Dyn., 2018, no. 5, p. 690.

  20. Egorov, I.V. and Nguen, N.K., Comput. Math. Math. Phys., 2022, vol. 62, no. 4, p. 658.

    Article  MathSciNet  Google Scholar 

  21. Jiang, G.S. and Shu, C.W., J. Comput. Phys., 1996, no. 126, p. 202.

  22. Egorov, I.V., Nguen, N.C., Nguen, T.S., and Chuvakhov, P.V., Comput. Math. Math. Phys., 2021, vol. 61, no. 2, p. 254.

    Article  MathSciNet  Google Scholar 

  23. Vyshinsky, V.V. and Sizykh, G.B., Math. Models Comput. Simul., 2019, vol. 11, no. 1, p. 97.

    Article  MathSciNet  Google Scholar 

Download references

Funding

This study was carried out at Moscow Institute of Physics and Technology with financial support from the Russian Science Foundation (project code 21-19-00307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Pal’chekovskaya.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, I.V., Nguyen, N.K. & Pal’chekovskaya, N.V. Numerical Simulation of the Interaction of a Mach Wave and a Boundary Layer on a Flat Plate. High Temp 61, 689–696 (2023). https://doi.org/10.1134/S0018151X23050036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X23050036

Navigation