Log in

Study of the Thermophysical Properties of Promising Thermal Insulation Materials for Space Engineering

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

Inverse heat transfer problems are used to study the thermophysical properties of promising highly porous cellular materials. The article presents the results of thermal tests on samples of these materials with different structures determined by the diameter of the cells. The thermophysical characteristics of the samples were obtained, which can be used to construct and verify mathematical models of heat transfer in highly porous cellular materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Alekseev, S.V., Aksenova, I.V., Ivanova, E.K., Kharitonova, E.V., and Lokhov, A.A., Vestn. NPO im. S.A. Lavochkina, 2017, vol. 35, no. 1, p. 64.

    Google Scholar 

  2. Formalev, V.F., Kolesnik, S.A., and Kuznetsova, E.L., High Temp., 2022, vol. 60, p. S288.

    Article  CAS  Google Scholar 

  3. Gorskii, V.V., High Temp., 2020, vol. 58, no. 2, p. 232.

    Article  CAS  Google Scholar 

  4. Golomazov, M.M. and Ivankov, A.A., Vestn. NPO im. S.A. Lavochkina, 2017, no. 3(37), p. 41.

  5. Ivankov, A.A., Zh. Vychisl. Mat. Mat. Fiz., 2005, vol. 45, no. 7, p. 1279.

    Google Scholar 

  6. Kolesnikov, A.V., Paleshkin, A.V., Pronina, P.F., and Shemetova, E.V., High Temp., 2022, vol. 60, no. 2, p. 215.

    Article  CAS  Google Scholar 

  7. Alifanov, O.M. and Cherepanov, V.V., Metody issledovaniya i prognozirovaniya svoistv vysokoporistykh teplozashchitnykh materialov (Methods for Studying and Predicting the Properties of Highly Porous Heat-Protective Materials), Moscow: Mosk. Aviats. Inst., 2014.

  8. Reznik, S.V., Prosuntsov, P.V., and Mikhailovskii, K.V., J. Eng. Phys. Thermophys., 2015, vol. 88, no. 3, p. 594.

    Article  CAS  Google Scholar 

  9. Venkataraman, S., Haftka, R.T., Sankar, B.V., Zhu, M., and Blosser, M.L., AIAA J., 2004, vol. 42, no. 11, p. 2355.

    Article  ADS  Google Scholar 

  10. Shchurik, A.G., Iskusstvennye uglerodnye materialy (Artificial Carbon Materials), Perm: Perm. Gos. Univ., 2009.

  11. Alifanov, O.M., Budnik, S.A., Nenarokomov, A.V., and Salosina, M.O., Appl. Therm. Eng., 2020, vol. 173, p. 115252.

    Article  CAS  Google Scholar 

  12. Salosina, M.O., Alifanov, O.M., and Nenarokomov, A.V., Tepl. Protsessy Tekh., 2019, vol. 11, no. 8, p. 345.

    Google Scholar 

  13. Doermann, D. and Sacadura, J.F., J. Heat Transfer, 1996, vol. 118, p. 88.

    Article  Google Scholar 

  14. Cellular and Porous Materials: Thermal Properties Simulation and Prediction, Ochsner, A., Murch, G.E., and de Lemos, M.J.S., Eds., Weinheim: Wiley, 2008.

  15. Coquard, R., Rochais, D., and Ballis, D., Fire Technol., 2012, vol. 48, p. 699.

    Article  Google Scholar 

  16. Baillis, D., Raynaud, M., and Sacadura, J.F., J. Thermophys. Heat Transfer, 2000, vol. 14, no. 2, p. 137.

    Article  CAS  Google Scholar 

  17. Cunsolo, S., Coquard, R., Baillis, D., and Bianco, N., Int. J. Therm. Sci., 2016, vol. 104, p. 122.

    Article  Google Scholar 

  18. Loretz, M., Coquard, R., Baillis, D., and Maire, E., J. Quant. Spectrosc. Radiat. Transfer, 2008, vol. 109, p. 16.

    Article  CAS  ADS  Google Scholar 

  19. Cunsolo, S., Coquard, R., Baillis, D., Wilson, K.S.Ch., and Bianco, N., Int. J. Therm. Sci., 2017, vol. 117, p. 77.

    Article  Google Scholar 

  20. Samudre, P. and Kailas, S.V., Appl. Therm. Eng., 2022, vol. 205, p. 117885.

    Article  CAS  Google Scholar 

  21. Corasaniti, S., Luca, E.De., and Gori, F., Int. J. Heat Mass Transfer, 2019, vol. 138, p. 41.

    Article  Google Scholar 

  22. Marri, G.K. and Balaji, C., Int. J. Heat Mass Transfer, 2021, vol. 164, p. 120454.

    Article  CAS  Google Scholar 

  23. Liu, H. and Zhao, X., Int. J. Heat Mass Transfer, 2022, vol. 183, p. 122089.

    Article  CAS  Google Scholar 

  24. Wang, M. and Pan, N., Int. J. Heat Mass Transfer, 2008, vol. 51, nos. 5–6, p. 1325.

    Article  CAS  Google Scholar 

  25. Alifanov, O.M., Identifikatsiya protsessov teploobmena letatel’nykh apparatov (Identification of Heat Transfer Processes in Aircraft), Moscow: Mashinostroenie, 1979.

  26. Alifanov, O.M., Obratnye zadachi teploobmena (Inverse Heat Transfer Problems), Moscow: Mashinostroenie, 1988.

  27. Alifanov, O.M., Artyukhin, E.A., and Rumyantsev, S.V., Ekstremal’nye metody resheniya nekorrektnykh zadach i ikh prilozheniya k obratnym zadacham teploobmena (Extreme Methods for Solving Ill-Posed Problems and Their Applications to Inverse Heat Transfer Problems), Moscow: Nauka, 1988.

  28. Alifanov, O.M., Budnik, S.A., Mikhailov, V.V., and Nenarokomov, A.V., Tepl. Protsessy Tekh., 2009, vol. 1, no. 2, p. 49.

    Google Scholar 

  29. Alifanov, O.M., Vabishchevich, P.N., Mikhailov, V.V., et al., Osnovy identifikatsii i proektirovaniya teplovykh protsessov i sistem (Fundamentals of Identification and Design of Thermal Processes and Systems), Moscow: Logos, 2001.

  30. Alifanov, O.M., Int. J. Numer. Methods Heat Fluid Flow, 2017, vol. 27, no. 3, p. 711.

    Article  Google Scholar 

  31. Peletskii, V.E., Teplofiz. Vys. Temp., 1993, vol. 31, no. 5, p. 727.

    CAS  Google Scholar 

  32. Smotritskii, A.V., Zinov’ev, V.E., Starostin, A.A., Korshunov, I.G., and Petrovskii, V.Ya., Teplofiz. Vys. Temp., 1996, vol. 34, no. 4, p. 546.

    Google Scholar 

  33. Budnik, S.A., Netelev, A.V., Salosina, M.O., and Samarin, V.V., Tepl. Protsessy Tekh., 2020, vol. 12, no. 12, p. 546.

    Google Scholar 

  34. Ozisik, M.N., Radiative Transfer and Interaction with Conduction and Convection, New York: Wiley, 1973.

    Google Scholar 

Download references

Funding

This research was funded by the Russian Science Foundation, grant number 18-19-00492.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Salosina.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alifanov, O.M., Budnik, S.A., Nenarokomov, A.V. et al. Study of the Thermophysical Properties of Promising Thermal Insulation Materials for Space Engineering. High Temp 61, 517–524 (2023). https://doi.org/10.1134/S0018151X23040016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X23040016

Navigation