Log in

Simulation of Artificial Ground Freezing under Conditions of Heterogeneous Mineralization of Pore Water

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

This paper presents a mathematical formulation of the problem of artificial freezing of a soil containing mineralized pore water (brines). The case of soil freezing with the help of a single freezing column is considered. It has been established that the migration of dissolved salt in brine occurs only through molecular diffusion. A numerical algorithm is proposed that allows to calculate the distribution of temperature and concentrations of the studied components and phases: brine, ice, salt dissolved in liquid brine, and salt precipitated into a solid insoluble precipitate. A numerical solution of the problem is obtained and some features of the temperature and concentration fields of the studied components and phases are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Ol’khovikov, Yu.P., Krep’ kapital’nykh vyrabotok kaliinykh i solyanykh rudnikov (Roadway of Capital Potash and Salt Mines), Moscow: Nedra, 1984.

  2. Yong, R.N., Cheung, C.H., and Sheeran, D.E., Dev. Geotech. Eng., 1979, vol. 26, p. 137.

    Google Scholar 

  3. Bing, H. and Ma, W., Cold Reg. Sci. Technol., 2011, vol. 67, nos. 1–2, p. 79.

    Article  Google Scholar 

  4. Wan, X., Lai, Y., and Wang, C., Permafrost Periglacial Processes, 2015, vol. 26, no. 2, p. 175.

    Article  Google Scholar 

  5. Banin, A. and Anderson, D.M., Water Resour. Res., 1974, vol. 10, no. 1, p. 124.

    Article  ADS  Google Scholar 

  6. Frivik, P.E., Eng. Geol., 1981, vol. 18, nos. 1–4, p. 115.

    Article  Google Scholar 

  7. Lucas, T., Chourot, J.-M., Bohuon, Ph., and Flick, D., Int. J. Heat Mass Transfer, 2001, vol. 44, no. 11, p. 2093.

    Article  Google Scholar 

  8. Plekhov, O., et al., Proc. Struct. Integr., 2019, vol. 17, p. 602.

    Google Scholar 

  9. Rouabhi, A., Jahangir, E., and Tounsi, H., Int. J. Heat Mass Transfer, 2018, vol. 120, p. 523.

    Article  Google Scholar 

  10. Tounsi, H., Rouabhi, A., and Jahangir, E., Comput. Geotech., 2020, vol. 119, p. 103382.

    Article  Google Scholar 

  11. Zhang, X., Wang, Q., Yu, T., et al., Int. J. Geomech., 2018, vol. 18, no. 7, p. 04018064.

    Google Scholar 

  12. Zhang, J., Lai, Y., Zhao, Y., et al., Permafrost Periglacial Processes, 2020, vol. 31, no. 1, p. 102.

    Google Scholar 

  13. Wu, D., Lai, Y., and Zhang, M., Cold Reg. Sci. Technol., 2017, vol. 133, p. 94.

    Article  Google Scholar 

  14. Wu, D., Zhou, X., and Jiang, X., Groundwater, 2018, vol. 56, no. 5, p. 742.

    Article  Google Scholar 

  15. Vasil’ev, V.I., Maksimov, A.M., Petrov, E.E., and Tsypkin, G.G., J. Appl. Mech. Tech. Phys., 1995, vol. 36, no. 5, p. 689.

    Article  ADS  Google Scholar 

  16. Galushkin, Y.I., Sitar, K.N., and Frolov, S.V., Permafrost Periglacial Processes, 2013, vol. 24, no. 4, p. 268.

    Article  Google Scholar 

  17. Tsytovich, N.A., Mekhanika merzlykh gruntov (Frozen Soil Mechanics), Moscow: URSS, 2009.

  18. de Groot, S.R., Thermodynamics of Irreversible Proces-ses, New York: Interscience, 1951.

    MATH  Google Scholar 

  19. Mortimer, R.G. and Eyring, H., Proc. Natl. Acad. Sci. U. S. A., 1980, vol. 77, no. 4, p. 1728.

    Article  ADS  Google Scholar 

  20. Jochem, M. and Körber, C., Wärme- Stoffübertrag., 1993, vol. 28, no. 4, p. 195.

  21. Panteleev, I.A., Kostina, A.A., Plekhov, O.A., et al., Sci. Cold Arid Reg., 2018, vol. 9, no. 4, p. 363.

    Google Scholar 

  22. Ma, G.-Y., Du, M.-J., and Li, D., J. China Univ. Pet. (Ed. Nat. Sci.), 2011, vol. 35, no. 3, p. 108.

  23. Ma, J. and Wang, X., Heat Transfer—Asian Res., 1999, vol. 28, no. 3, p. 165.

  24. Semin, M.A., et al., J. Min. Sci., 2020, vol. 56, no. 2, p. 297.

    Article  Google Scholar 

  25. Yong-ji, X., Taiyuan Sci. Technol., 2008, vol. 3.

    Google Scholar 

  26. Aleksyutina, D.M. and Motenko, R.G., Moscow Univ. Geol. Bull., 2016, vol. 71, no. 2, p. 275.

    Article  Google Scholar 

  27. Semin, M.A., Bogomyagkov, A.V., and Levin, L.Yu., J. Min. Inst., 2020, vol. 243, p. 319.

    Article  Google Scholar 

  28. Semin, M. and Levin, L., Frattura ed Integrita Strutturale, 2019, vol. 13, no. 49, p. 167.

  29. Tsypkin, G.G., Fluid Dyn., 2019, vol. 54, no. 5, p. 681.

    Article  ADS  MathSciNet  Google Scholar 

  30. van Genuchten, M.T., Soil Sci. Soc. Am. J., 1980, vol. 44, no. 5, p. 892.

    Article  ADS  Google Scholar 

  31. Leverett, M.C., Trans. AIME, 1941, vol. 142, no. 1, p. 152.

  32. Anderson, D.M., Tice, A.R., and McKim, H.L., Proc. 7nd Int. Conf. on Permafrost, Yakutsk, 1973, p. 289.

  33. Cote, J. and Konrad, J.M., Can. Geotech. J., 2005, vol. 42, no. 2, p. 443.

    Article  Google Scholar 

  34. Kantzas, A., Bryan, J., and Taheri, S., Pore size distribution, in Fundamentals of Fluid Flow in Porous Media, Calgary: PERM Lab., 2012, vol. 1.

    Google Scholar 

  35. Samarskii, A., A., Moiseenko, B.D., Zh. Vychislit. Matem. Matem. Fiz., 1965, vol. 5, no. 5, p. 816.

    Google Scholar 

  36. Trupak, N.G., Zamorazhivanie gruntov v podzemnom stroitel’stve (Soil Freezing in Underground Construction), Moscow: Nedra, 1974.

  37. Kurant, R., Fridrikhs, K., and Levi, G., Usp. Mat. Nauk., 1941, no. 8, p. 125.

Download references

Funding

This work was supported by the Ministry of Education and Science of the Perm Krai, grant no. С-25/563.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Semin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semin, M.A., Levin, L.Y., Zhelnin, M.S. et al. Simulation of Artificial Ground Freezing under Conditions of Heterogeneous Mineralization of Pore Water. High Temp 60, 391–398 (2022). https://doi.org/10.1134/S0018151X22020286

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X22020286

Navigation