Log in

Long-term galactic cosmic ray variations over the last billion years based on the cosmic-ray exposure ages of iron meteorites

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The distribution of the cosmic-ray exposure ages (T) of iron meteorites was analyzed to establish the possible variations in the intensity of the galactic cosmic ray (GCR) over the last billion years. The analysis was made for the entire data set containing ~80 age values from the literature (Voshage et al., 1983) and the corrected set after the exclusions of paired meteorites (using the Akaike information criterion). The dependence of the criterion χ2 in the distribution of the phase values Ph = T/t–int(T/t) on the values of the assumed period (t) of GCR variations was analyzed for both sets of meteorites. The significant deviations of these parameters from the respective average values were found for t ~ 400–500 Myr and, in part, for t ~ 150 Myr. These deviations were interpreted by numerical modeling using the values of ages randomly distributed in the range of 0–1000 Ma. It was found that for variations with a period of 450 Myr, the distribution of the phase values and cosmic-ray exposure ages in the model data set is similar to that of iron meteorites. These results testify to the existence of the GCR variations with a period of ~400–500 Myr during the last 1 Gyr. The variations in the GCR flux can be explained by periodic galactic spiral arm crossings of the solar system. The GCR variations with a period of ~150 Myr discussed in the previous studies (Shaviv, 2002; 2003; Scherer et al., 2006) appears to be less certain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H. Akaike, “A new look at the statistical model identification,” IEEE T. Automat. Contr. AC 19 (6), 716–723 (1974).

    Article  Google Scholar 

  • V. A. Alexeev, “Exposure history of ordinary chondrites,” Sol. Syst. Res. 27 (3), 273–288 (1993).

    Google Scholar 

  • V. A. Alexeev, “The history of ordinary chondrites from the data on stable isotopes of noble gases (a review),” Sol. Syst. Res. 39 (2), 124–149 (2005).

    Article  Google Scholar 

  • V. A. Alexeev, “On the variations of galactic cosmic rays during the last billion years,” Lunar Planet. Sci. 46, # 1003pdf (2015).

  • C. A. L. Bailer-Jones, “The evidence for and against astronomical impacts on climate change and mass extinctions: a review,” Int. J. Astrobiol. 8 (3), 213–239 (2009).

    Article  Google Scholar 

  • L. N. Bol’shev and N. V. Smirnov, Tables of Mathematical Statistics (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  • T. H. Burbine, T. J. McCoy, A. Meibom, B. Gladman, and K. Keil, “Meteoritic parent bodies: their number and identification,” in Asteroids III, Ed. by W. F. Bottke et al. (Univ. Arizona Press, Tucson, 2002), pp. 653–667.

    Google Scholar 

  • G. F. Herzog, “Cosmic-ray exposure ages of meteorites,” in Meteorites, Comets and Planets. Vol. 1. Treatise on Geochemistry, Ed. by H. D. Holland and K. K. Turekian, (Elsevier–Pergamon, Oxford, 2003), pp. 347–379.

    Google Scholar 

  • K. Jahnke, “On the periodic clustering of cosmic ray exposure ages of iron meteorites,” Astron. Astrophys., No. 4155J, (2005) (http://tinyurlcom/388odc).

  • K. Keil, H. Haack, and E. R. D. Scott, “Catastrophic fragmentation of asteroids: evidence from meteorites,” Planet. Space Sci. 42, 1109–1122 (1994).

    Article  Google Scholar 

  • B. Lavielle, K. Marti, J. P. Jeannot, K. Nishiizumi, and M. Caffee, “The 36Cl–36Ar–40K–41K records and cosmic ray production rates in iron meteorites,” Earth Planet. Sci. Lett. 170, 93–104 (1999).

    Article  Google Scholar 

  • A. K. Lavrukhina, “New data on temporal and spatial variations of cosmic rays in the Solar System: meteorite data,” Izv. Akad. Nauk SSSR, Ser. Fiz. 33 (11), 1870–1876 (1969).

    Google Scholar 

  • A. K. Lavrukhina and G. K. Ustinova, Meteorites as Probes of Cosmic Ray Variations (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  • P. S. Marochnik and L. M. Mukhin, “Galactic “belt of life,” Priroda, No. 11, 52–57 (1997).

    Google Scholar 

  • P. S. Marochnik and A. A. Suchkov, Galaxy (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  • A. C. Overholt, A. L. Melott, and M. Pohl, “Testing the link between terrestrial climate change and Galactic spiral arm transit,” Astrophys. J. 705, L101–L103 (2009).

    Article  Google Scholar 

  • S. Rahmstorf, D. Archer, D. S. Ebel, O. Eugster, J. Jouzel, D. Maraun, G. A. Schmidt, J. Sever-Inghaus, A. J. Weaver, and J. Zachos, “Cosmic rays, carbon dioxide, and climate,” EOS Trans. Am. Geophys. Union 85 (4), 38–41 (2004).

    Article  Google Scholar 

  • L. Sachs, Statistische Auswertungsmethoden (Springer, Berlin–Heidelberg–New York, 1972).

    Book  Google Scholar 

  • K. Scherer, H. Fichtner, T. Borrmann, J. Beer, L. Desorgher, E. Flukiger, H. J. Fahr, S. E. S. Ferreira, U. W. Langner, M. S. Potgieter, B. Heber, J. Masarik, N. Shaviv, and J. Veizer, “Interstellar–terrestrial relations: variable cosmic environments, the dynamic heliosphere, and their imprints on terrestrial archives and climate,” Space Sci. Rev. 127, 327–465 (2006).

    Article  Google Scholar 

  • N. J. Shaviv, “Cosmic ray diffusion from the galactic spiral arms, iron meteorites, and a possible climatic connection,” Phys. Rev. Lett. 89, 051102 (2002). doi:10.1103/PhysRevLett.89.051102

    Article  Google Scholar 

  • N. J. Shaviv, “The spiral structure of the Milky Way, cosmic rays, and ice age epochs on Earth,” New Astron. 8, 39–77 (2003).

    Article  Google Scholar 

  • M. N. Stepnov, Statistical Methods of Processing of Mechanical Test Results: A Reference Book (Mashinostroenie, Moscow, 1985) [in Russian].

    Google Scholar 

  • I. Strashnov, P. A. Bland, P. Spurny, M. C. Towner, and J. D. Gilmour, “Times of impacts that deliver samples of Vesta to Earth derived from ultrasensitive 81Kr–Kr cosmic ray exposure age analysis of eucrites,” Geochim. Cosmochim. Acta 106, 71–83 (2013).

    Article  Google Scholar 

  • H. Voshage, “Investigations of cosmic-ray-produced nuclides in iron meteorites, 6. The Signer-Nier model and the history of the cosmic radiation,” Earth Planet. Sci. Lett. 71, 181–194 (1984).

    Article  Google Scholar 

  • H. Voshage and H. Feldmann, “Investigation on cosmic ray produced nuclides in iron meteorites, 3. Exposure ages, meteoroid sizes and sample depths determined by mass spectrometric analyses of potassium and rare gases,” Earth Planet. Sci. Lett. 45, 293–308 (1979).

    Article  Google Scholar 

  • H. Voshage and H. Hintenberger, “Massenspektrometrische Isotopenhaufigkeitsmessungen an Kalium aus Eisen-Meteoriten und das Problem der Bestimmung der 41K–40K-Strahlungsalter,” Z. Naturforsch. 16a, 1042–1053 (1961).

    Google Scholar 

  • H. Voshage, H. Feldmann, and O. Braun, “Investigation on cosmic ray produced nuclides in iron meteorites, 5: More data on the nuclides of potassium and noble gases on exposure ages and meteoroid sizes,” Z. Naturforschg. 38a, 273–280 (1983).

    Google Scholar 

  • R. Wieler, J. Beer, and I. Leya, “The galactic cosmic ray intensity over the past 106–109 years as recorded by cosmogenic nuclides in meteorites and terrestrial samples,” Space Sci. Rev. 176, 351–363 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Alexeev.

Additional information

Original Russian Text © V.A. Alexeev, 2016, published in Geokhimiya, 2016, No. 1, pp. 89–96.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexeev, V.A. Long-term galactic cosmic ray variations over the last billion years based on the cosmic-ray exposure ages of iron meteorites. Geochem. Int. 54, 78–84 (2016). https://doi.org/10.1134/S001670291601002X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670291601002X

Keywords

Navigation