Log in

Recently fallen Bukhara (CV3) and Kilabo (LL6) chondrites: A parallel study of luminescence, tracks, and cosmogenic radionuclides

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Thermoluminescence, tracks of VH nuclei, and cosmogenic radionuclides with various half-lives were studied of the recently fallen Bukhara CV3 and Kilabo LL6 chondrites. The obtained experimental information and theoretical modeling were utilized to examine the thermal impact and exposure histories of these chondrites, estimate the sizes and masses they had before entering the atmosphere, extent of their ablation, the circumferences of the orbits, and to evaluate the distribution and variations in cosmic radiation in the heliosphere in the maximum phase of the 23rd solar cycle. The Kilabo LL6 chondrite and the Bensour LL6 (which fall six months earlier) were determined to be genetically related to the asteroid 3628 Boznemcova.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Russell, J. Zipfel, L. Folco, et al., Meteoritical Bulletin, No. 87, 2003 July,” Meteorit. Planet. Sci. 38(7), A189–A248.

  2. S. S. Russell, M. Zolensky, K. Righter, et al., “The Meteoritical Bulletin, No. 89, 2005 September,” Meteorit. Planet. Sci. 40(9), A201–A263.

  3. R. T. Dodd, Meteorites: A Petrologic-Chemical Synthesis (Cambridge University Press, London, 1981; Mir, Moscow, 1986).

    Google Scholar 

  4. G. J. Wasserburg and D. A. Papanastassiou, “Some Short-Lived Nuclides in the Early Solar System—A Connection with the Placental ISM,” in Essays in Nuclear Astrophysics, Ed. by C. A. Barnes and D. N. Schrarnm (Cambridge Univ. Press, Cambridge, 1982; Mir, Moscow, 1986), pp. 77–140.

    Google Scholar 

  5. Y. Cantelaube, P. Pellas, D. Nordemann, and J. Tobailem, “Reconstruction de la Meteorite Saint-Severin dans l’Espace,” in Meteorite Research, (D.Reidel, Dordrecht, 1969), pp. 705–713.

    Google Scholar 

  6. K. Marti, J. P. Shedlovsky, R. M. Lindstrom, et al., “Cosmic-Ray Produced Radionuclides and Rare Gases Near the Surface of Saint-Severin Meteorite,” in Meteorite Research (D. Reidel, Dordrecht, 1969), pp. 246–266.

    Google Scholar 

  7. A. G. W. Cameron, “Birth of a Solar System,” Nature 418(6901), 924–925 (2002).

    Article  Google Scholar 

  8. D. D. Clayton, “Precondensed Matter: Key to the Early Solar System,” Moon and Planets 19(2), 109–137 (1978).

    Article  Google Scholar 

  9. D. D. Clayton, “Some Key Issues in Isotopic Anomalies: Astrophysical History and Aggregation,” Lunar Planet. Sci. Conf. 12B, 1781–1802 (1981).

    Google Scholar 

  10. G. R. Huss, “The role of Presolar Dust in the Formation of the Solar System,” Earth, Moon and Planets 40(2), 165–211 (1988).

    Article  Google Scholar 

  11. G. R. Huss and R. S. Lewis, “Presolar Diamond, SiC, and Graphite in Primitive Chondrites: Abundances as a Function of Meteorite Class and Petrologic Type,” Geochim. Cosmochim. Acta 59(1), 115–160 (1995).

    Article  Google Scholar 

  12. J. M. Lattimer, D. N. Schramm, and L. Grossman, “Condensation in Supernova Ejecta and Isotopic Anomalies in Meteorites,” Astrophys. J. 219(1), 230–249 (1978).

    Article  Google Scholar 

  13. F. H. Shu, H. Shang, and T. Lee, “Toward an Astrophysical Theory of Chondrites,” Science 271(5255), 1545–1552 (1996).

    Article  Google Scholar 

  14. V. A. Dorofeeva and A. B. Makalkin, Evolution of the Early Solar System (URSS, Moscow, 2004) [in Russian].

    Google Scholar 

  15. G. K. Ustinova, “On the Problem of Solar System Origin: The Regularities of Noble Gas Fractionation in Shock Waves,” Astron. Vestn. 41, 1–26 (2007) [Solar. Syst. Res. 41 (3), 231–255 (2007)].

    Google Scholar 

  16. R. J. Williams, “Equilibrium Temperatures, Pressures, and Oxygen Fugacities of the Equilibrated Chondrites,” Geochim. Cosmochim. Acta 35, 407–411 (1971).

    Article  Google Scholar 

  17. A. K. Lavrukhina, Nuclear Reactions in Cosmic Bodies (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  18. A. K. Lavrukhina and G. K. Ustinova, Meteorites as Probes of Variations in Cosmic Rays (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  19. Yu. A. Shukolyukov and L. K. Levskii, Geochemistry and Cosmochemistry of Noble Gas Isotopes (Atomizdat, Moscow, 1972) [in Russian].

    Google Scholar 

  20. L. Schultz and H. Kruse, “Light Noble Gases in Stony Meteorites: A Compilation,” Nucl. Tracks Detection 2(1), 65–103 (1978).

    Article  Google Scholar 

  21. V. A. Alexeev, “The History of Ordinary Chondrites from the Data on Stable Isotopes of Noble Gases (a Review),” Astron. Vestn. 39(2), 141–168 (2005) [Solar Syst. Res. 39 (2), 124–149 (2005)].

    Google Scholar 

  22. D. Lal, “Hard Rock Cosmic Ray Archaeology,” Space Sci. Rev. 14(1), 3–102 (1972).

    Article  Google Scholar 

  23. N. Bhandari, D. Lal, R. S. Rajan, et al., “Atmospheric Ablation in Meteorites: An Experimental Study Based on Cosmic Ray Track,” Nucl. Tracks 4(4), 213–262 (1980).

    Article  Google Scholar 

  24. V. A. Alexeev and G. K. Ustinova, “Cosmogenic Nuclide Evidence on Ages, Sizes and Orbits of Meteorites,” Nucl. Geophys. 9(6), 609–618 (1995).

    Google Scholar 

  25. G. K. Ustinova, “Cosmic Rays in the Heliosphere and Cosmogenic Nuclides,” Nucl. Geophys. 9(3), 273–281 (1995).

    Google Scholar 

  26. V. A. Alexeev and G. K. Ustinova, “Solar Modulation of Galactic Cosmic Rays in the Three-Dimensional Heliosphere According to Meteorite Data,” Geokhimiya, No. 5, 467–482 (2006) [Geochem. Int. 44, 423–438 (2006)].

  27. V. A. Alexeev, V. D. Gorin, A. I. Ivliev, et al., “Combined Study of Thermoluminescence, Tracks, and Radionuclides in the Recently Fallen Kunya-Urgench Chondrite,” Geokhimiya, No. 11, 1139–1151 (2001) [Geochem. Int. 39, 1043–1055 (2001)].

  28. D. W. G. Sears, “Thermoluminescence of Meteorites: Shedding Light on the Cosmos,” Nucl. Tracks Radiat. Meas. 14(1/2), 5–17 (1988).

    Article  Google Scholar 

  29. C. L. Melcher, “Thermoluminescence of Meteorites and Their Orbits,” Earth Planet. Sci. Lett. 52(1), 39–54 (1981).

    Article  Google Scholar 

  30. P. H. Benoit, D. W. G. Sears, and S. W. S. McKeever, “The Natural Thermoluminescence of Meteorites. II: Meteorite Orbits and Orbital Evolution,” Icarus 94(2), 311–325 (1991).

    Article  Google Scholar 

  31. A. I. Ivliev and V. A. Alexeev, “Estimation of the Meteorite Orbits by the Thermoluminescence Method,” Lunar Planet. Sci. Conf. 37, CD No. 1047 (2006).

  32. J. M. C. Akridge, P. H. Benoit, and D. W. G. Sears, “Terrestrial Age Measurements Using Natural Thermoluminescence of a Drained Zone under the Fusion Crust of Antarctic Ordinary Chondrites,” Meteor. Planet. Sci 35(4), 869–874 (2000).

    Google Scholar 

  33. P. H. Benoit, J. M. C. Akridge, D. W. G. Sears, et al., “The Weathering of Antarctic Meteorites: Climatic Controls on Weathering Rates and Implications for Meteorite Accumulation,” Lunar Planet. Sci. Conf. 28, 95–96 (1997).

    Google Scholar 

  34. P. H. Benoit, H. Sears, and D. W. G. Sears, “Ice Movement, Pairing and Meteorite Showers of Ordinary Chondrites from the Allan Hills,” Meteoritics 26(4), 317 (1991).

    Google Scholar 

  35. D. W. G. Sears, F. A. Hasan, J. D. Batchelor, and J. Lu, “Chemical and Physical Studies of Type 3 Chondrites—XI: Metamorphism, Paring, Brecciation of Type 3 Ordinary Hondrites,” Lunar Planet. Sci. Conf. 21, 493–512 (1991).

    Google Scholar 

  36. D. W. Sears, J. N. Grossman, C. L. Melcher, et al., “Measuring Metamorphic History of Unequilibrated Ordinary Chondrites,” Nature 287(5785), 791–795 (1980).

    Article  Google Scholar 

  37. D. W. G. Sears, J. D. Batchelor, J. Lu, and B. D. Keck, “Metamorphism of CO and CO-Like Chondrites and Comparison with Type 3 Ordinary Chondrites,” Proc. NIPR Symp. Antarct. Meteorites, No. 4, 319–343 (1991).

  38. R. K. Guimon, S. I. K. Symes, W. G. Derek, et al., “Chemical and Physical Studies of Type 3 Chondrites XII: The Metamorphic History of CV Chondrites and Their Components,” Meteoritics 30(6), 704–714 (1995).

    Google Scholar 

  39. A. I. Ivliev, N. S. Kuyunko, A. Ya. Skirpnik, and M. Nazarov, “A Thermoluminescence Studies of Carbonaceous Chondrites,” Lunar Planet. Sci. Conf. 36, CD No. 1065 (2005).

  40. A. I. Ivliev, N. S. Kuyunko, A. Ya. Skripnik, and M. A. Nazarov, “The Metamorphic History of CO and CV Chondrites Investigated by the Thermoluminescence Method,” in 40th Vernadsky-Brown Microsymposium on Comparative Planetology, Moscow, Russia, 2004 (Moscow, 2004), CD No. 39.

  41. J. D. Batchelor and D. W. G. Sears, “Metamorphism of Eucrite Meteorites Studied Quantitatively Using Induced Thermoluminescence,” Nature 349 (1991).

  42. A. I. Ivliev, L. L. Kashkarov, N. S. Kuyunko, et al., “Experimental Study of the Impact-Thermal Evolution of Carbonaceous Chondrites by Thermoluminescent and Track Methods,” Vestn. Otdel. Nauk Zemle RAN, No 1 (22), 2004 [in Russian].

  43. M. Haq, F. A. Hasan, and D. W. G. Sears, “Thermoluminescence and the Shock and Reheating History of Meteorites. IV: The Induced TL Properties of Type 4 Ordinary Chondrites,” Geochim. Cosmochim. Acta 52(6), 1679–1689 (1988).

    Article  Google Scholar 

  44. A. I. Ivliev, V. A. Alekseev, and N. S. Kuyunko, “Thermoluminescent Study of Impact Metamorphism of Ordinary Chondrites,” Vestn. Otd. Nauk Zemle RAN, No 1(24), (2006) URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2006/Informbul-1_2006/Planet-5.pdf

  45. A. I. Ivliev, V. A. Alexeev, and N. S. Kuyunko, “Research of the Shock Metamorphism of Ordinary Chondrites by the Thermoluminescence Method,” Lunar Planet. Sci. Conf. 38, CD No. 1043 (2007).

  46. R. N. Clayton, N. Onuma, and T. K. Mayeda, “A Classification of Meteorites Based on Oxygen Isotopes,” Earth Planet. Sci. Lett. 30(1), 10–18 (1976).

    Article  Google Scholar 

  47. E. Anders, H. Higuchi, R. Ganapathy, and J. W. Morgan, “Chemical Fractionations in Meteorites-IX. C3 Chondrites,” Geochim. Cosmochim. Acta 40(9), 1131–1139 (1976).

    Article  Google Scholar 

  48. A. I. Ivliev, D. D. Badyukov, and L. L. Kashkarov, “Investigations of Thermoluminescence in Experimentally Shocked Samples: I: Oligoclase,” Geokhimiya, No. 9, 1368–1377 (1995).

  49. A. I. Ivliev, D. D. Badyukov, and L. L. Kashkarov, “Investigations of Thermoluminescence in Experimentally Shocked Samples: II. Quartz,” Geokhimiya, No. 10, 1011–1018 (1996) [Geochem. Int. 34, 912–919 (1996)].

  50. A. I. Ivliev, D. D. Badyukov, N. S. Kuyunko, and E. A. Kozlov, “A Study of Thermoluminescence in Experimentally Shocked Samples. III: Calcite,” Geokhimiya, No. 8, 820–833 (2002) [Geochem. Int. 40, 739–750 (2002)].

  51. D. Stöffler, K. Keil, and E.R.D. Scott, “Shock Metamorphism of Ordinary Chondrites,” Geochim. Cosmochim. Acta. 55(12), 3845–3867 (1991).

    Article  Google Scholar 

  52. P. M. Millman, “Astronomical Information on Meteorite Orbits,” in Meteorite Research, Ed. by P. Millman (D.Reidel, Dordrecht, 1969), pp. 541–551.

    Google Scholar 

  53. A. N. Simonenko, Orbital Elements of 45 Meteorites. Atlas (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  54. R. L. Fleischer, P. B. Price, R. M. Walker, and M. Maurette, “Origin of Fossil Charged-Particle Tracks in Meteorites,” J. Geophys. Res. 72(1), 331–353 (1967).

    Article  Google Scholar 

  55. L. L. Kashkarov, “High-Energy Nuclei of VH-Group Cosmic Rays in Early Solar System,” Izv. Akad. Nauk SSSR, Ser. Fiz. 52(12), 2321–2324 (1988).

    Google Scholar 

  56. L. L. Kashkarov, L. I. Genaeva, G. V. Kalinina, and A. K. Lavrukhina, “Effects of X-Ray Radiation of ordinary Chondrites at the Early Stage of Formation of Solar System Bodies,” Meteoritika, No. 47, 113–122 (1988).

  57. L. L. Kashkarov and G. K. Ustinova, “Specific Features of Radiation Environment in the Early Solar System,” Dokl. Akad. Nauk 372(5), 659–662 (2000) [Dokl. Earth Sci. 373, 833–836 (2000)].

    Google Scholar 

  58. M. W. Caffee, C. M. Hohenberg, T. D. Swindle, and J. N. Goswami, “Evidence in Meteorites for an Active Early Sun,” Astrophys. J. 313(1), L31–L35 (1987).

    Article  Google Scholar 

  59. S. K. Bhattacharya, J. N. Goswami, and D. Lal, “Semiempirical Rates of Formation of Cosmic Ray Tracks in Spherical Objects Exposed in Space: Pre-and Post-Atmospheric Depth Profiles,” J. Geophys. Res. 78(34), 8356–8363 (1973).

    Article  Google Scholar 

  60. K. J. Cole and P. P. Sipiera, “Kilabo and Bensour: A Comparative Study of Two Recent LL6 Falls from Africa,” Lunar Planet. Sci. Conf. 34, CD No. 1135 (2003).

  61. S. Krishnaswami, D. Lal, N. Prabhu, and A. Tamhane, “S. Olivines: Revelation of Tracks of Charged Particles,” Science 174, 287–291 (1974).

    Article  Google Scholar 

  62. R. L. Fleischer, P. B. Price, R. M. Walker, Nuclear Tracks in Solids (Univ. California Press, Berkeley, 1975).

    Google Scholar 

  63. G. V. Kalinina and L. L. Kashkarov, “Results of Track Investigation for the Chondrites Barwell L5, Kilabo LL6, Tugalin Bulen L6 and Bukhara CV3,” Lunar Planet. Sci. Conf. 38, CD No. 1067, 2007.

  64. K. J. Cole, L. Schultz, P. P. Sipiera, and K. C. Welten, “Kilabo and Bensour, Two LL6 Chondrite Falls from Africa with Very Similar Mineralogical Compositions But Different Cosmic-Ray Exposure Histories,” Lunar Planet. Sci. Conf. 38, CD No. 1477 (2007).

  65. A. K. Lavrukhina, V. A. Alekseev, V. D. Gorin, and A. I. Ivliev, Low-Background Radiometry (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  66. G. K. Ustinova and A. K. Lavrukhina, “Variations of Cosmic Rays in the Heliosphere: Results of Study of Extraterrestrial Matter,” Geokhimiya, No. 4, 483–501 (1983).

  67. G. K. Ustinova, V. A. Alekseev, and A. K. Lavrukhina, “Determination Method of Pre-Atmospheric Sizes of Meteorites,” Geokhimiya, No. 10, 1379–1395 (1988).

  68. A. K. Lavrukhina and G. K. Ustinova, “Cosmogenic Radionuclides in Stones and Meteorite Orbits,” Earth Planet. Sci. Lett. 15(4), 347–360 (1972).

    Article  Google Scholar 

  69. V. A. Alekseev and G. K. Ustinova, “Regularities in the Distribution of Cosmogenic Isotopes in Meteorites of Differing Exposure Ages,” Geokhimiya, No. 9, 805–818 (1996) [Geochem. Int. 34, 725–736 (1996)].

  70. V. A. Alekseev and G. K. Ustinova, “Correlation Analysis of Statistic Distributions of Ages and Orbits of Ordinary Chondrites,” Geokhimiya, No. 10, 1046–1066 (2000) [Geochem. Int. 38, 937–954 (2000)].

  71. G. K. Ustinova and A. K. Lavrukhina, “Analytical Expressions for Distribution of Cosmic Radiation and Radionuclides in Meteorites,” in Proceedings of International Cosmic Ray Conference, Adelaida, Australia, 1990, (Adelaida, 1990), Vol. 7, pp. 141–144.

    Google Scholar 

  72. G. A. Bazilevskaya and A. K. Svirzhevskaya, “On the Stratospheric Measurements of Cosmic Rays,” Space Sci. Rev. 85, 431–521 (1998).

    Article  Google Scholar 

  73. D. O. ReVelle, “A Quasi-Simple Ablation Model for Large Meteorite Entry: Theory vs. Observation,” J. Atmos. Terr. Phys. 41(5), 453–473 (1979).

    Article  Google Scholar 

  74. B. Baldwin and Y. Sheaffer, “Ablation and Breakup of Large Meteoroids during Atmospheric Entry,” J. Geophys. Res. 76(19), 4653–4668 (1971).

    Article  Google Scholar 

  75. G. K. Ustinova, V. A. Alekseev, and A. K. Lavrukhina, “Evolution of Meteorite Bodies in Cosmic Space,” in Collected Papers on Cosmochemistry (Naukova Dumka, Kiev, 1990), pp. 123–130 [in Russian].

    Google Scholar 

  76. P. Signer and A. O. Nier, “The Distribution of Cosmic Ray Produced Rare Gases in Iron Meteorites,” J. Geophys. Res. 65(9), 2947–2964 (1960).

    Article  Google Scholar 

  77. N. Bhandari, D. Lal, C. M. Nautiyal, et al., “Determination of Preatmospheric Sizes of Meteorites Using Neon Isotopes and Particle Tracks,” Meteoritics 16(4), 265 (1980).

    Google Scholar 

  78. Th. Graf, H. Baur, and P. Signer, “A Model for the Production of Cosmogenic Nuclides in Chondrites,” Geochim. Cosmochim. Acta 54(9), 2521–2534 (1990).

    Article  Google Scholar 

  79. J. Masarik, K. Nishiizumi, and R. C. Reedy, “Production Rates of Cosmogenic Helium-3, Neon-21, and Neon-22 in Ordinary Chondrites and the Lunar Surface,” Meteorit. Planet. Sci. 36(5), 643–650 (2001).

    Article  Google Scholar 

  80. I. Leya, H.-J. Lange, S. Neumann, et al., “The Production of Cosmogenic Nuclides in Stony Meteoroids by Galactic Cosmic Ray Particles,” Meteorit. Planet. Sci. 35, 259–286 (2000).

    Google Scholar 

  81. I. Leya, F. Begemann, H. W. Weber, et al., “Simulation of the Interaction of Galactic Cosmic Ray Protons with Meteoroids: On the Production of Radionuclides in Thick Gabbro and Iron Targets Irradiated Isotropically with 1.6 GeV Protons,” Meteorit. Planet. Sci. 39(3), 367–386 (2004).

    Article  Google Scholar 

  82. V. A. Alekseev, “Meteorite Ablation Evaluated from Data on the Distribution of Cosmogenic Neon Isotopes,” Astron. Vestn. 37(3), 229–239 (2003) [Solar. Syst. Res. 37 (3), 207–217].

    Google Scholar 

  83. N. Bhandari and M. B. Potdar, “Cosmogenic 21Ne and 22Ne Depth Profiles in Chondrites,” Earth Planet. Sci. Lett. 58(6), 116–128 (1982).

    Article  Google Scholar 

  84. G. W. Wetherill, “Multiple Cosmic Ray Exposure Ages of Meteorites,” Meteoritics 15(4), 386–387 (1980).

    Google Scholar 

  85. N. Bhandari and M. N. Rao, “Cosmic Ray Effects in the Solar System Objects,” Proc. Indian Acad. Sci. Sect. A 89(2), 121–132 (1980).

    Google Scholar 

  86. P. Eberhardt, J. Geiss, and H. Lutz, “Neutrons in Meteorites,” in Earth Science and Meteoritics (North-Holland, Amsterdam, 1963), pp. 143–168.

    Google Scholar 

  87. E. Jarosewich, “Chemical Analyses of Meteorites: A Compilation of Stony and Iron Meteorite Analyses,” Meteoritics 25, 323–337 (1990).

    Google Scholar 

  88. G. A. Bazilevskaya, M. B. Krainev, Yu. I. Stozhkov, et al., “Long-Term Soviet Program for the Measurement of Ionizing Radiation in the Atmosphere,” J. Geomagn. Geoelectr. 43(Suppl. 1), 893–900 (1991).

    Google Scholar 

  89. M. B. Krainev and U. R. Veber, “Solar Cycle in the Intensity of Galactic Cosmic Rays in the Interior and Periphery of the Heliosphere,” Izv. RAN, Ser. Fiz. 69(6), 838–841 (2005).

    Google Scholar 

  90. D. T. Britt and G. J. Consolmagno, “Meteorite Porosities and Densities: A Review of Trends in the Data,” Lunar Planet. Sci. Conf. 35, CD No. 2108 (2004).

  91. G. K. Ustinova and A. K. Lavrukhina, “Phenomenological Expression for Estimation of Aphelia of Fallen Meteorites,” Lunar Planet. Sci. Conf. 11, 1187–1189 (1980).

    Google Scholar 

  92. P. Brown, Zd. Ceplecha, R. L. Hawkes, et al., “The Orbit and Atmospheric Trajectory of the Peekskill Meteorite from Video Records,” Nature 367, 624–626 (1994).

    Article  Google Scholar 

  93. L. D. Landau and E. M. Livshits, Mechanics (Fizmatgiz, Moscow, 1958) [in Russian].

    Google Scholar 

  94. S. I. Ipatov, “Migration of Small Bodies to the Earth,” Astron. Vestn. 29(4), 304–330 (1995).

    Google Scholar 

  95. F. Migliorini, A. Manara, T. Scaltriti, et al., “Surface Properties of 6 Hebe: A Possible Parent Body of Ordinary Chondrites,” Icarus 128, 104–113 (1997).

    Article  Google Scholar 

  96. D. Morrison, “The Impact Hazard,” in Proc. Near-Earth Object Intercept Workshop, Ed. by G. H. Canavan, J. C. Solem, and J. D. G. Rather (Los Alamos, 1993), pp. 49–59.

  97. L. A. McFadden, M. J. Gaffey, and T. B. McCord, “Near-Earth Asteroids: Possible Sources from Reflectance Spectroscopy,” Science 229(4709), 160–163 (1985).

    Article  Google Scholar 

  98. R. P. Binzel, Xu. Shui, S. J. Bus, et al., “Discovery of a Main-Belt Asteroid Resembling Ordinary Chondrite Meteorites,” Science 262(5139), 1541–1543 (1993).

    Article  Google Scholar 

  99. http://www.fourmilab.ch/yoursky/catalogues/asteroid_namesB.html

  100. Z. Knezevic, A. Milani, P. Farinella, et al., “Secular Resonances from 2 to 50 AU,” Icarus 93(2), 316–330 (1991).

    Article  Google Scholar 

  101. http://www.answers.com/topic/3628-boznemcov

  102. Yu. I. Vitinskii, Solar Activity (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  103. V. A. Alekseev and G. K. Ustinova, “Features of Modulation of Galactic Cosmic Rays in 1954–1992 Based on Meteorite Data,” Izv. Akad. Nauk, Ser. Fiz. 63(8), 1625–1629 (1999).

    Google Scholar 

  104. V. A. Alekseev, V. D. Gorin, and G. K. Ustinova, “Distribution and Variations of Galactic Cosmic Rays in the Heliosphere According to Meteorite Data,” Dokl. Akad. Nauk 394(3), 328–331 (2004) [Dokl. Physics 49, 51–55 (2004)].

    Google Scholar 

  105. V. A. Alekseev and G. K. Ustinova, “Correlation Analysis of Variation of Solar Activity and Gradients of Galactic Cosmic rays in the Heliosphere Based on Meteorite Data,” Izv. Akad. Nauk, Ser. Fiz. 69(6), 846–849 (2005).

    Google Scholar 

  106. L. Z. Rumshiskii, Mathematical Processing of Experimental Results (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  107. A. V. Belov, E. A. Eroshenko, B. Heber, et al., “Latitudinal and Radial Variation of >2 GeV/N Protons and Particles in the Southern Heliosphere at Solar Maximum: ULYSSES COSPIN/KET and Neutron Monitor Network Observations,” in Proceeding of 27th International Cosmic Ray Conference, Hamburg, Germany, 2001 (Hamburg, 2001), pp. 3996–3999.

  108. R. B. McKibben, J. J. O’Gallagher, K. R. Pyle, and J. A. Simpson, “Cosmic Ray Intensity Gradients in the Outer Solar System Measured by Pioneer 10 and 11,” in Proceeding of 15th International Cosmic Ray Conference, Plovdiv, Bulgaria, 1977 (Plovdiv, 1977), Vol. 3, pp. 240–245.

    Google Scholar 

  109. L. F. Burlaga, “Understanding the Helisophere and Its Energetic Particles,” Proceeding of 18th International Cosmic Ray Conference, Bangalore, India, 1983 (Bangalore, 1983), Vol. 12, pp. 21–60.

    Google Scholar 

  110. http://www.sunspot.net.cat3sun_r.html

  111. ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA

  112. http://quake.stanford.edu/:_wso/Polar.ascii

  113. http://nssdc.gsfc.nasa.gov/omniweb/form/dx1.html

  114. http://quake.stanford.edu/:_wso/wso.html

  115. http://www.clearlight.com/:_mhieb/WVFossils/last_200_yrs.html

  116. http://www.clearlight.com/:_mhieb/WVFossils/temp_vs_CO2.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Alexeev.

Additional information

Original Russian Text © V.A. Alexeev, V.D. Gorin, A.I. Ivliev, L.L. Kashkarov, G.K. Ustinova, 2008, published in Geokhimiya, 2008, No. 9, pp. 915–933.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexeev, V.A., Gorin, V.D., Ivliev, A.I. et al. Recently fallen Bukhara (CV3) and Kilabo (LL6) chondrites: A parallel study of luminescence, tracks, and cosmogenic radionuclides. Geochem. Int. 46, 849–866 (2008). https://doi.org/10.1134/S0016702908090012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702908090012

Keywords

Navigation