Log in

Unsteady Flow in a Dual-Bell Nozzle with Displacement of an Extendible Section from the Initial to Working Position

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The use of extendible nozzles in propulsion systems is one potential way to increase the nozzle expansion ratio and the specific thrust. Numerical simulation of the supersonic turbulent flow of a viscous compressible gas in a dual-bell nozzle is considered. The displacement of the extendible section of the nozzle from the initial to the working position is taken into account. Numerical calculations are based on the Reynolds-averaged Navier –Stokes equations and equations of the SST turbulence model and sliding meshes. The unsteady structure of the flow formed when the nozzle is restored to service, and the topological features of the flow and relationships between flow quantities are studied. A variation of the force applied to the nozzle walls when the reactive jet flows out is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Gazodinamicheskie i teplofizicheskie protsessy v raketnykh dvigatelyakh tverdogo topliva (Gas Dynamic and Thermal Physical Processes in Solid-Propellant Rocket Engines), Koroteev, A.S., Ed., Moscow: Mashinostroenie, 2004.

    Google Scholar 

  2. Konstruktsii raketnykh dvigatelei na tverdom toplive (Structures of Solid-Propellant Rocket Engines), Lavrov, L.N., Ed., Moscow: Mashinostroenie, 1993.

    Google Scholar 

  3. Hagemann, G., Immich, H., Nguyen, T.V., and Dumnov, G.E., Advanced rocket nozzles, J. Propul. Power, 1998, vol. 14, no. 5, рр. 620–633.

  4. Ellis, R.A. and Berdoyes, M., An example of successful international cooperation in rocket motor technology, Acta Astron., 2002, vol. 51, no. 1–9, pp. 47–56.

  5. Lacoste, M., Lacombe, A., Joyez, P., Ellis, R.A., Lee, J.C., and Payne, F.M., Carbon–carbon extendible nozzles, Acta Astron., 2002, vol. 50, no. 6, рр. 357–367.

  6. Shishkov, A.A., Panin, S.D., and Rumyantsev, B.V., Rabochie protsessy v RDTT (Operating Processes in Solid-Propellant Rocket Engine), Moscow: Mashinostroenie, 1989.

  7. Ivanov, I.E. and Kryukov, I.A., Numerical research for turbulent flows with limited and free separation in profiled nozzles, Vestn. Mosk. Aviats. Inst., 2009, vol. 16, no. 7, pp. 23–30.

    Google Scholar 

  8. Glushko, G.S., Ivanov, I.E., and Kryukov, I.A., Numerical simulation of separated flow in nozzles, Fiz.-Khim. Kinet. Gaz. Din., 2010, vol. 9, pp. 1–8.

    Google Scholar 

  9. Verma, S.B. and Haidn, O., Unsteady shock motions in an over-expanded parabolic rocket nozzle, Aerospace Sci. Technol., 2014, vol. 39, pp. 48–71.

    Article  Google Scholar 

  10. Hagemann, G., Frey, M., and Koschel, W., Appearance of restricted shock separation in rocket nozzles, J. Propul. Power, 2002, vol. 18, no. 3, pp. 577–584.

    Article  Google Scholar 

  11. Hunter, C.A., Experimental, theoretical, and computational investigation of separated nozzle flows, Proc. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibition, Cleveland, 1998, paper no. 98-3107.

  12. Aliev, A.V. and Mironov, A.N., The way to simulate gas dynamic processes in nonsymmetrical nozzle blocks, Izv. Ross. Akad. Raketnykh Artilleriisk. Nauk, 2013, no. 3, pp. 40–45.

  13. Genin, C., Stark, R., Haidn, O., Quering, K., and Frey, M., Experimental and numerical study of dual bell nozzle flow, Progr. Flight Phys., 2013, vol. 5, pp. 363–376.

    Article  Google Scholar 

  14. Arora, R. and Vaidyanathan, A., Experimental investigation of flow through planar double divergent nozzles, Acta Astron., 2015, vol. 112, pp. 200–216.

    Article  Google Scholar 

  15. Sreenath, K.R. and Mubarak, A.K., Design and analysis of contour bell nozzle and comparison with dual bell nozzle, Int. J. Res. Eng., 2016, vol. 3, no. 6, pp. 52–56.

    Google Scholar 

  16. Narayan, A. and Panneerselvam, S., Study of the effect of over-expansion factor on the flow transition in dual bell nozzles, Int. J. Mech., Aerospace, Ind., Mechatron. Manuf. Eng., 2012, vol. 6, no. 8, pp. 1591–1595.

    Google Scholar 

  17. Nasuti, F., Onofri, M., and Martelli, E., Role of wall shape on the transition in axisymmetric dual-bell nozzles, J. Propul. Power, 2005, vol. 21, no. 2, pp. 243–250.

    Article  Google Scholar 

  18. Wong, H. and Schwane, R., Numerical investigation of transition in flow separation in a dual-bell nozzle, Proc. 4th Symp. on Aerothermodynamics for Space Vehicles, Oct. 15–18, 2001, Capua: European Space Agency, 2002, pp. 425–432.

  19. Taylor, N., Steelant, J., and Bond, R., Experimental comparison of dual bell and expansion deflection nozzles, Proc. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibition, San Diego, 2011, paper no. 2011-5688.

  20. Perigo, D., Schwane, R., and Wong, H., A numerical comparison of the flow in conventional and dual bell nozzles in the presence of an unsteady external pressure environment, Proc. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibition, Huntsville, July 20–23, 2003, paper no. 2003-4731.

  21. Stark, R., Genin, C., Wagner, B., and Koschel, W., The altitude adaptive dual bell nozzle, Proc. 16th Int. Conf. on the Methods of Aerophysical Research (ICMAR 2012), Kazan, Aug. 20–26, 2012.

  22. Martelli, E., Nasuti, F., and Onofri, M., Numerical parametric analysis of dual-bell nozzle flows, AIAA J., 2007, vol. 45, no. 3, pp. 640–650.

    Article  ADS  Google Scholar 

  23. Kochetkov, A.O., Efficiency of multinozzle scheme for rocket booster with non-round non-axisymmetric nozzles, Izv. Vyssh. Uchebn. Zav. Aviats. Tekhn., 2009, no. 3, pp. 67–69.

  24. Raketno-kosmicheskaya korporatsiya “Energiya” imeni S.P. Koroleva na rubezhe dvukh vekov (S.P. Korolev Rocket and Space Corporation Energia on the Edge of Two Centuries), Semenov, Yu.P., Ed., Korolev: S.P. Korolev Rocket and Space Corporation Energia, 2001.

  25. Volkov, K.N., The way to discrete Navier–Stokes equations at movable nonstructured grids, Vychisl. Metody Program., 2008, vol. 9, no. 1, pp. 256–273.

    Google Scholar 

  26. Savel’ev, S.K., Emel’yanov, V.N., and Benderskii, B.Ya., Eksperimental’nye metody issledovaniya gazodinamiki RDTT (Experimental Methods for Researching Gas Dynamic Processes in Solid-Propellant Rocket Engine), St. Petersburg: Nedra, 2007.

  27. Volkov, K.N., Emel’yanov, V.N., and Yakovchuk, M.S., Numerical simulation of the interaction of a transverse jet with a supersonic flow using different turbulence models, J. Appl. Mech. Tech. Phys., 2015, vol. 56, no. 5, pp. 789–799.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Emelyanov.

Additional information

Translated by E. Seifina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emelyanov, V.N., Volkov, K.N. & Yakovchuk, M.S. Unsteady Flow in a Dual-Bell Nozzle with Displacement of an Extendible Section from the Initial to Working Position. Fluid Dyn 57 (Suppl 1), S35–S45 (2022). https://doi.org/10.1134/S0015462822601267

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462822601267

Keywords:

Navigation