Log in

Effect of the angle of water entry of a body on the generated wave heights

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The results of a numerical investigation of the angle of water entry of a body on the parameters of the waves generated in the near zone are presented. The disturbed region dimensions are studied and the laws of variation of the source parameters are established. It is shown that the cavity parameters most intensely vary at the body fall angles greater than 20° and obey a quasilinear law. The variation intensity increases with increase in the velocity, while the tendency of the linear law is conserved. The water entry of a body at an angle smaller than 20° occurs in accordance with another scenario, where the body can under certain conditions rebound from the water surface, while the disturbed region boundaries are rather smeared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Lavrent’ev and B. V. Shabat, Problems of Fluid Dynamics and Their Mathematical Models [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  2. V. I. Bukreev and A. V. Gusev, “Gravity Waves Produced upon Body Fall on Shallow Water,” Zh. Prikl. Mekh. Tekhn. Fiz. 37 2, 90 (1996).

    Google Scholar 

  3. S. Gekle, I. R. Peters, J. M. Gordillo, D. van der Meer, and D. Lohse, “Supersonic Air Flow Due to Solid-Liquid Impact,” Phys. Rev. Lett. No. 104, 024501 (2010).

    Article  ADS  Google Scholar 

  4. J. M. Aristoff, “On Falling Spheres: The Dynamics of Water Entry and Descent along a Flexible Beam,” Ph. D. Thesis, Massachusetts Inst. Technol. (2009).

    Google Scholar 

  5. E. Pierazzo, N. Artemieva, E. Asphaug, E. C. Baldwin, J. Cazamias, R. Coker, G. S. Collins, D. A. Crawford, T. Davison, D. Elbeshausen, K. A. Holsapple, K. R. Housen, D. G. Korycansky, and K. Wunemann, “Validation of Numerical Codes for Impact and Explosion Cratering: Impacts on Strengthless and Metal Targets,” Meteoritics Planet. Sci. 43, 1917 (2008).

    Article  ADS  Google Scholar 

  6. A. V. Komarov and V. V. Kazennov, “Body Fall into a Reservoir Filled with a Liquid and Calculations of the Occurring Dynamic Loads,” Vestn. FGBOU VPO “MGSU”. Ser. Gidravl. Inzh. Gidrologiya. Gidrotekhn. Stroi. No. 5, 135 (2014).

    Google Scholar 

  7. A. S. Kozelkov, A. A. Kurkin, and E. N. Pelinovskii, “Cosmogenic Tsunami,” Trudy Nizhniy Novgorod Gos. Tekhn. Univ. No. 2 104, 26 (2014).

    Google Scholar 

  8. G. V. Logvinovich, Hydrodynamics of Flows with Free Boundaries [in Russian], Naukova Dumka, Kiev (1969).

    Google Scholar 

  9. A. S. Kozelkov, A. A. Kurkin, E. N. Pelinovskii, and V. V. Kurulin, “Modeling the Cosmogenic Tsunami within the Framework of the Navier–Stokes Equations with Sources of Different Types,” Fluid Dynamics 50 2, 306 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. S. Kozelkov, “Effects Accompanying the Meteorite Entry into the Water Medium,” Trudy Nizhniy Novgorod Gos. Tekhn. Univ. No. 3 105, 48 (2014).

    Google Scholar 

  11. E. N. Pelinovskii, Hydrodynamics of Tsunami Waves [in Russian], Inst. Appl. Physics, Nizhniy Novgorod (1996).

    Google Scholar 

  12. S. N. Ward and E. Asphaug, “Asteroid Impact Tsunami: A Probabilistic Hazard Assessment,” Icarus 145, 64 (2000).

    Article  ADS  Google Scholar 

  13. C. Kharif and E. Pelinovsky, “Asteroid Impact Tsunamis,” C. R. Physique 6, 361 (2005).

    Article  ADS  Google Scholar 

  14. V. Badescu and D. Isvoranu, “Dynamics and Coastal Effects of Tsunamis Generated by Asteroids Impacting the Black Sea,” Pure Appl. Geophys. 168, 1813 (2011).

    Article  ADS  Google Scholar 

  15. C. W. Hirt, and B. D. Nichols, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” J. Comput. Phys. 39, 201 (1981).

    Article  ADS  MATH  Google Scholar 

  16. O. Ubbink, “Numerical Prediction of Two Fluid Systems with Sharp Interfaces,” PhD Thesis, Imperial College, Univ. London (1997).

    Google Scholar 

  17. A. Zh. Zhainakov and A. Y. Kurbanaliev, “Verification of the OpenFOAM Open Package against the Dam Breakthrough Problems,” Teplofiz. Aeromekh. 20, 461 (2013).

    Google Scholar 

  18. J. Horrillo, A. Wood, G. B. Kim, and A. Parambath, “A Simplified 3-D Navier–Stokes Numerical Model for Landslide-Tsunami: Application to the Gulf of Mexico,” J. Geophys. Res.: Oceans 118, 6934 (2013).

    Article  ADS  Google Scholar 

  19. K. N. Volkov and V. N. Emel’yanov, Gas Flows with Particles [in Russian], Fizmatlit, Moscow (2008).

    MATH  Google Scholar 

  20. A. S. Kozelkov, V. V. Kurulin, E. S. Tyatyushkina, O. L. Puchkova, and S. V. Lashkin, “Detached Eddy Simulation of Turbulent Viscous Incompressible Flows on Unstructured Grids,” Mat. Model. 26 8, 81 (2013).

    MATH  Google Scholar 

  21. A. S. Kozelkov, Yu. N. Deryugin, Yu. A. Tsibereva, A. V. Kornev, O. V. Denisova, D. Yu. Strelets, A. A. Kurkin, V. V. Kurulin, I. L. Sharipova, D. P. Rubtsova, M. A. Legchanov, E. S. Tyatyushkina, S. V. Lashkin, A. V. Yalozo, S. V. Yatsevich, N. V. Tarasova, R. R. Ginniyatullin, M. A. Sizova, and O. L. Krutyakova, “Minimal Basis of Problems forValidatingMethods of Numerical Simulation of TurbulentViscous Incompressible Flows,” TrudyNizhniy Novgorod Gos. Tekhn. Univ. No. 4(104), 21 (2014).

    Google Scholar 

  22. A. S. Kozelkov and V. V. Kurulin, “Numerical Scheme forModeling Incompressible Turbulent Flows Using Eddy-ResolvingModels,” Zh. Vychisl. Mat. Mat. Fiz. 55 7, 135 (2015).

    MathSciNet  MATH  Google Scholar 

  23. A. Kozelkov, V. Kurulin, V. Emelyanov, E. Tyatyushkina, and K. Volkov, “Comparison of Convective Flux Discretization Schemes in Detached Eddy Simulation of Turbulent Flows on Unstructured Meshes,” J. Sci. Comput. DOI. doi 10. 1007/s10915-015-0075-7 (2015).

    Google Scholar 

  24. M. Darwish, I. Sraj, and F. Moukalled, “A Coupled Finite Volume Solver for the Solution of Incompressible Flows on Unstructured Grids,” J. Comput. Phys. 228, 180 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Springer, Berlin (2002).

    Book  MATH  Google Scholar 

  26. R. Mittal and G. Iaccarino, “Immersed Boundary Methods,” Annu. Rev. Fluid Mech. 37, 239 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. A. Posa, A. Lippolis, R. Verzicco, and E. Balaras, “Large-Eddy Simulations in Mixed-Flow Pumps Using an Immersed-Boundary Method,” Computers Fluids 47 1, 33 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  28. K. N. Volkov, Yu. N. Deryugin, V. N. Emel’yanov, A. S. Kozelkov, and I. V. Teterina, Difference Schemes in Gasdynamic Problems on Unstructured Grids [in Russian], Fizmatlit, Moscow (2014).

    Google Scholar 

  29. A. S. Kozelkov, Yu. N. Deryugin, S. V. Lashkin, D. P. Silaev, P. G. Simonov, and E. S. Tyatyushkina, “Realization of the Method of Calculating Viscous Incompressible Flows Using a Multigrid Technique Based on the SIMPLE Algorithm in the LOGOS Software Package,” VANT. Mat. Model. Fiz. Proc. Issue 4, 44 (2013).

    Google Scholar 

  30. A. A. Golubev, Yu. N. Deryugin, D. K. Zelenskii, A. S. Kozelkov, S. V. Lashkin, D. P. Silaev, and P. G. Simonov, “LOGOS Software Package. Development and Implementation of an Algebraic MultigridMethod,” in: R. M. Shagaliev (ed. ) Supercomputations and Mathematical Modeling. Works of XIV Intern. Conf. [in Russian], Sarov (2013), p. 175.

    Google Scholar 

  31. K. N. Volkov, Yu. N. Deryugin, V. N. Emel’yanov, A. G. Karpenko, A. S. Kozelkov, and I. V. Teterina, Methods of Accelerating Gasdynamic Calculations on Unstructured Grids [in Russian], Fizmatlit, Moscow (2103).

    Google Scholar 

  32. V. B. Betelin, R. M. Shagaliev, S. V. Aksenov, I. M. Belyakov, Yu. N. Deryugin, D. A. Korchazhkin, A. S. Kozelkov, V. F. Nikitin, A. V. Sarazov, and D. K. Zelenskiy, “Mathematical Simulation of Hydrogen-Oxygen Combustion in Rocket Engines Using LOGOS Code,” Acta Astronaut. 96, 53 (2014).

    Article  ADS  Google Scholar 

  33. A. S. Kozelkov, V. V. Kurulin, O. L. Puchkova, and S. V. Lashkin, “Modeling Turbulent Flows Using the Algebraic Reynolds-Stress Model with UniversalWall Functions,” Vychisl. Mekh. Sploshnykh Sred 7 1, 40 (2014).

    Google Scholar 

  34. A. S. Kozelkov, S. V. Lashkin, V. V. Kurulin, M. A. Sizova, D. P. Rubtsova, and E. S. Tyatyushkina, “Modern Approaches to the Turbulent Flow Modeling. Realization and Experience of Using the LES and DES Models in the Software Package LOGOS,” in: R. M. Shagaliev (ed. ), Supercomputations and Mathematical Modeling. Proc. XIV Intern. Conf. [in Russian], Sarov (2013), p. 344.

    Google Scholar 

  35. A. S. Kozelkov, A. A. Kurkin, I. L. Sharipova, V. V. Kurulin, E. N. Pelinovskii, E. S. Tyatyushkina, D. P. Meleshkina, S. V. Lashkin, and N. V. Tarasova, “Minimal Basis of the Problems for ValidatingMethods of Calculations of Flows with a Free Surface,” Trudy Nizhniy Novgorod Gos. Tekhn. Univ. No. 2(109), 49 (2015).

    Google Scholar 

  36. A. V. Minakov, A. A. Gavrilov, and A. A. Dekterev, “Numerical Algorithm for Solving Three-Dimensional Fluid Dynamics Problems with Movable Solid Bodies and a Free Surface,” Sib. Zh. Industr. Mat. 11, No. 4(36), 94 (2008).

    MathSciNet  MATH  Google Scholar 

  37. A. S. Kozelkov, A. A. Kurkin, and E. N. Pelinovskii, “Modeling Body Fall into the Water on the Basis of the Numerical Solution of the Navier–Stokes Equations Using a Fully Implicit Method,” Trudy Nizhniy Novgorod Gos. Tekhn. Univ. No. 3(110), 26 (2015).

    Google Scholar 

  38. T. Truscott, J. Belden, and R. Hurd, “Water-Skip** Stones and Spheres,” Physics Today 67(12), 70 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kozelkov.

Additional information

Original Russian Text © A.S. Kozelkov, A.A. Kurkin, E.N. Pelinovskii, 2016, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2016, Vol. 51, No. 2, pp. 166–176.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozelkov, A.S., Kurkin, A.A. & Pelinovskii, E.N. Effect of the angle of water entry of a body on the generated wave heights. Fluid Dyn 51, 288–298 (2016). https://doi.org/10.1134/S0015462816020162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462816020162

Keywords

Navigation