Log in

Monitoring of Natural and Technogenic Space Hazards: Results of the Lomonosov Mission and Universat-SOCRAT Project

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

The results of experiments onboard the Lomonosov satellite on observing natural and technogenic space hazards including electromagnetic transients and space debris are discussed. A new space project Universat-SOCRAT being developed by Moscow State University is also discussed. The project aims to create a constellation of small satellites for real-time monitoring of the radiation environment and potentially hazardous objects of natural (asteroids, meteoroids) and technogenic origin (space debris) in near-Earth space, and such phenomena as cosmic and atmospheric gamma-ray bursts and optical and ultraviolet radiation flashes from Earth’s atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 2.
Fig. 3.
Fig. 6.

Similar content being viewed by others

Notes

  1. Abbreviation “Universat”—University Satellite; “SOCRAT”—System of Observing the Cosmic Radiation, Asteroid and Technogenic hazard.

REFERENCES

  1. Sadovnichy, V.A., Panasyuk, M.I., Amelushkin, A.M., et al., Lomonosov satellite—space observatory to study extreme phenomena in space, Space Sci. Rev., 2017, vol. 212, nos. 3–4, pp. 1705–1738.

    Article  ADS  Google Scholar 

  2. Sadovnichii, V.A., Amelyushkin, A.M., Angelopoulos, V., et al., Space experiments aboard the Lomonosov MSU satellite, Cosmic Res., 2013, vol. 51, no. 6, pp. 427–433.

    Article  ADS  Google Scholar 

  3. Panasyuk, M.I., Svertilov, S.I., Bogomolov, V.V., et al., Experiment on the Vernov satellite: Transient energetic processes in the Earth’s atmosphere and magnetosphere. Part I: Description of the experiment 2016, Cosmic Res., 2016, vol. 54, no. 4, pp. 261–269.

    Article  ADS  Google Scholar 

  4. Panasyuk, M.I., Svertilov, S.I., Bogomolov, V.V., et al., Experiment on the Vernov satellite: Transient energetic processes in the Earth’s atmosphere and magnetosphere. Part II: Final results, Cosmic Res., 2016, vol. 54, no. 5, pp. 343–350.

    Article  ADS  Google Scholar 

  5. Sadovnichii, V.A., Panasyuk, M.I., Yashin, I.V., et al., Investigations of the space environment aboard the Universitetsky–Tat’yana and Universitetsky–Tat’yana-2 microsatellites, Sol. Syst. Res., 2011, vol. 45, no. 1, pp. 3–29.

    Article  ADS  Google Scholar 

  6. Mullen, E.G., Gussenhoven, M.S., Ray, K., and Violet, M.A., A double-peaked inner radiation belt: Cause and effect as seen on CRRES, IEEE Trans. Nucl. Sci., 1991, vol. 38, pp. 1713–1718.

    Article  ADS  Google Scholar 

  7. Myagkova, I.N., Bogomolov, A.V., and Shugai, Yu.S., The dynamics of relativistic electron fluxes in the near-Earth space in 2001–2005, Moscow Univ. Phys. Bull., 2010, vol. 65, no. 3, pp. 234–237.

    Article  ADS  Google Scholar 

  8. Tverskaya, L.V., Balashov, S.V., Veden’kin, N.N., et al., Outer radiation belt of relativistic electrons during the minimum of the 23rd solar cycle, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 6, pp. 740–745.

  9. Harris, A., The population of near-Earth asteroids, Icarus, 2015, vol. 257, pp. 302–312.

    Article  ADS  Google Scholar 

  10. Mainzer, A., Bauer, J., Grav, T., and Masiero, J., The population of tiny near-Earth objects observed by NEOWISE, Astrophys. J., 2014, vol. 784, no. 2, id 110.

  11. Gurevich, A.V., Milikh, G.M., and Roussel-Dupre, R.A., Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm, Phys. Lett. A, 1992, vol. 165, nos. 5–6, pp. 463–468.

    Article  ADS  Google Scholar 

  12. Mareev, E.A., Evtushenko, A.A., and Yashunin, S.A., On the modelling of sprites and sprite-producing clouds in the global electric circuit, in Sprites, Elves and Intense Lightning Discharges, Füllekrug, M., et al., Eds., Springer, Netherlands, 2006, pp. 313–340.

    Google Scholar 

  13. Milikh, G.M., Valdivia, J.A., and Papadopoulos, K., Spectrum of red sprites, J. Atmos. Terr. Phys., 1998, vol. 60, nos. 7–9, pp. 907–915.

    Article  ADS  Google Scholar 

  14. Surkov, V.V. and Hayakawa, M., Underlying mechanisms of transient luminous events: A review, Ann. Geophys., 2012, vol. 30, no. 8, pp. 1185–1212.

    Article  ADS  Google Scholar 

  15. Fishman, G.J., Bhat, P.N., Mallozzi, R., et al., Discovery of intense gamma-ray flashes of atmospheric origin, Science, 1994, vol. 264, no. 5163, pp. 1313–1316.

    Article  ADS  Google Scholar 

  16. Dwyer, J.R., Smith, D.M., and Cummer, S.A., High-energy atmospheric physics: Terrestrial gamma-ray flashes and related phenomena, Space Sci. Rev., 2012, vol. 173, nos. 1–4, pp. 133–196.

    Article  ADS  Google Scholar 

  17. Dwyer, J.R., The relativistic feedback discharge model of terrestrial gamma ray flashes, J. Geophys. Res., 2012, vol. 117, no. A2, A02308.

    ADS  Google Scholar 

  18. Garipov, G., Grigoriev, A., Khrenov, B., Klimov, P., and Panasyuk, M., High energy transient luminous atmospheric phenomena: The potential danger for suborbital flights, in Extreme Events in Geospace, Buzulukova, N., Ed., Elsevier, 2017, pp. 473–490.

    Google Scholar 

  19. Bhat, P.N., Meegan, C.A., von Kienlin, A., et al., The 3rd Fermi GBM gamma-ray burst catalog: The first six years, Astrophys. J. Suppl. Ser., 2016, vol. 223, no. 2, id 28.

  20. Radioactive space debris: what goes up, must come down, WISE/NIRS Nuclear Monitor, no. 629, June 10, 2005.

  21. Anikeeva, M.A., Boyarchuk, K.A., and Ulin, S.E., Space debris detection onboard a space vehicle, Vopr. Elektromekh., 2012, vol. 126, no. 1, pp. 13–18.

    Google Scholar 

  22. Klimov, P.A., Panasyuk, M.I., Khrenov, B.A., et al., The TUS detector of extreme energy cosmic rays on board the Lomonosov satellite, Space Sci. Rev., 2017, vol. 212, nos. 3–4, pp. 1687–1703.

    Article  ADS  Google Scholar 

  23. Svertilov, S.I., Panasyuk, M.I., Bogomolov, V.V., et al., Wide-field gamma-spectrometer BDRG: GRB monitor on-board the Lomonosov mission, Space Sci. Rev., 2018, vol. 214, no. 1, id 8.

  24. Lipunov, V.M., Gorbovskoy, E.S., Kornilov, V.G., et al., SHOK—the first Russian wide-field optical camera in space, Space Sci. Rev., 2018, vol. 214, no. 1, id 6.

  25. Park, I.H., Panasyuk, M.I., Reglero, V., et al., UFFO/Lomonosov: The payload for the observation of early photons from gamma ray bursts, Space Sci. Rev., 2018, vol. 214, no. 1, id 14.

  26. Adams, J.H. and the JEM-EUSO collaboration, Space experiment TUS onboard the Lomonosov satellite as pathfinder of JEM-EUSO, Exp. Astron., 2015, vol. 40, no. 1, pp. 315–326.

    Article  ADS  Google Scholar 

  27. Khrenov, B.A., Klimov, P.A, Panasyuk, M.I., et al., First results from the TUS orbital detector in the extensive air shower mode, J. Cosmol. Astropart. Phys., 2017, vol. 2017, no. 9, id 006.

  28. Khrenov, B.A. and Stulov, V.P., Detection of meteors and sub-relativistic dust grains by the fluorescence detectors of ultra high energy cosmic rays, Adv. Space Res., 2006, vol. 37, no. 10, pp. 1868–1875.

    Article  ADS  Google Scholar 

  29. Adams, J.H., Ahmad, S., Albert, J.N., et al., JEM-EUSO: Meteor and nuclearite observations, Exp. Astron., 2015, vol. 40, no. 1, pp. 253–279.

    Article  ADS  Google Scholar 

  30. Abdellaoui, G., Abe, S., Acheli, A., et al., Meteor studies in the framework of the JEM-EUSO program, Planet. Space Sci., 2017, vol. 143, pp. 245–255.

    Article  ADS  Google Scholar 

  31. Lipunov, V., Kornilov, V., Gorbovkoy, E., et al., Master robotic net, Adv. Astron., 2010, id 349171.

  32. Kornilov, V., Lipunov, V., Gorbovskoy, E., et al., Robotic optical telescopes global network master II. Equipment, structure, algorithms, Exp. Astron., 2012, vol. 33, no. 1, pp. 173–196.

    Article  ADS  Google Scholar 

  33. Panasyuk, M.I., Podzolko, M.V., Kovtyukh, A.S., et al., Operational radiation monitoring in near-Earth space based on the system of multiple small satellites, Cosmic Res., 2015, vol. 53, no. 6, pp. 423–429.

    Article  ADS  Google Scholar 

  34. Panasyuk, M.I., Podzolko, M.V., Kovtyukh, A.S., et al., Optimization of measurements of the Earth’s radiation belt particle fluxes, Cosmic Res., 2017, vol. 55, no. 2, pp. 79–87.

    Article  ADS  Google Scholar 

  35. Garipov, G.K., Panasyuk, M.I., Rubinshtein, I.A., et al., Ultraviolet radiation detector of the MSU research educational microsatellite Universitetskii–Tat’yana, Instrum. Exp. Tech., 2006, vol. 49, no. 1, pp. 126–131.

    Article  Google Scholar 

  36. Panasyuk, M.I., Svertilov, S.I., Bogomolov, V.V., et al., RELEC mission: Relativistic electron precipitation and TLE study on-board small spacecraft, Adv. Space Res., 2016, vol. 57, no. 3, pp. 835–849.

    Article  ADS  Google Scholar 

  37. Amelyushkin, A.M., Galkin, V.I., Goncharov, B.V., et al., The BDRG and SHOK instruments for studying gamma-ray burst prompt emission onboard the Lomonosov spacecraft, Cosmic Res., 2013, vol. 51, no. 6, pp. 434–438.

    Article  ADS  Google Scholar 

  38. Kalegaev, V.V., Bobrovnikov, S.Yu., Kuznetsov, N.V., Myagkova, I.N., and Shugai, Yu.S., The SIMP MSU operational space monitoring center, in Prikladnye aspekty geliogeofiziki. Materialy spetsial’noi sektsii “Prakticheskie aspekty nauki kosmicheskoi pogody” 11-i ezhegodnoi konferentsii “Fizika plazmy v solnechnoi sisteme” (Applied Aspects of Heliogeophysics: Proceedings of the Special Section “Practical Aspects of Space Weather” of the 11th Annual Conference “Plasma Physics in the Solar System”), Moscow: IKI RAN, 2016, pp. 146–159.

  39. Belyaev, V.A. and Chudakov, A.E., Ionization glow of air and its possible use for air shower detection, Izv. Akad. Nauk SSSR: Ser. Fiz., 1966, vol. 30, no. 10, pp. 1700–1707.

    Google Scholar 

  40. Klimov, P.A., Garipov, G.K., Khrenov, B.A., et al., Vernov satellite data of transient atmospheric events, J. Appl. Meteorol. Climatol., 2017, vol. 56, no. 8, pp. 2189–2201.

    Article  ADS  Google Scholar 

  41. Dwyer, J.R., Smith, D.M., Uman, M.A., et al., Estimation of the fluence of high-energy electron bursts produced by thunderclouds and the resulting radiation doses received in aircraft, J. Geophys. Res., 2010, vol. 115, no. D9, D09206.

    Article  ADS  Google Scholar 

  42. Tavani, M., Marisaldi, M., Labanti, C., et al., Terrestrial gamma-ray flashes as powerful particle accelerators, Phys. Rev. Lett., 2011, vol. 106, no. 1, 018501.

    Article  ADS  Google Scholar 

  43. Drozdov, A., Grigoriev, A., and Malyshkin, Y., Assessment of thunderstorm neutron radiation environment at altitudes of aviation flights, J. Geophys. Res., 2013, vol. 118, no. 2, pp. 947–955.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Russia’s Ministry of Education and Science (unique project ID: RFMEFI60717X0175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Svertilov.

Additional information

Translated by A. Kobkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadovnichii, V.A., Panasyuk, M.I., Lipunov, V.M. et al. Monitoring of Natural and Technogenic Space Hazards: Results of the Lomonosov Mission and Universat-SOCRAT Project. Cosmic Res 56, 488–497 (2018). https://doi.org/10.1134/S001095251901009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001095251901009X

Keywords

Navigation