Log in

A role of trophoblastic cells in regulation of mouse blastocyst survival in vitro after microinjection and osmotic stress

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

We have evaluated the morphology of the mouse preimplantation embryos at developmental stages from morula to late blastocyst after two different impacts: microinjection of modified Witten’s medium and osmotic stress in physiological osmolarity (310 mOsM), in 5% glucose (560 mOsM) at high concentration of NaCl (614 mOsM). Results of our research showed that these stresses caused similar changes in embryo morphology: volume was reduced followed by its recovery in culture medium (osmolality was less than a physiological value, 260 mOsM). The ability of embryos to recover the volume and morphology up to the initial level depends on a stage of embryo development and consequently competence of TB cells. In this study it was revealed that a key role in regulation of volume homeostasis after microinjection and after short-time (30–60 min) osmotic stress belongs to TB cells. Both physical effects induce the further embryo development in vitro up to the formation of primary colonies of embryonic and trophoblastic cells. These data could be used to develop the morphological criteria for a prediction of blastocyst-stage embryonic implantation potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nagy, M. Gertsenstein, K. Vintersten, and R. Behringer, in Cold Spring Harbor (Cold Spring Harbor Laboratory Press, N.Y., 2003), pp. 268–271.

    Google Scholar 

  2. T. P. Fleming, B. Sheth, and I. Fesenko, Front Biosci. 6, D1000 (2001).

    Article  Google Scholar 

  3. A. J. Watson and L. C. Barcroft, Front. Biosci. 6, D708 (2001).

    Article  Google Scholar 

  4. L. C. Barcroft, H. Offenberg, P. Thomsen, and A. J. Watson, Develop. Biol. 256, 342 (2003).

    Article  Google Scholar 

  5. Y. Yamanaka, A. Ralston, R. O. Stephenson, and J. Rossant, Dev. Dyn. 235(9), 2301 (2006).

    Article  Google Scholar 

  6. G. M. Kidder, Can. J. Physiol. Pharmacol. 80(2), 110 (2002).

    Article  Google Scholar 

  7. Y. Zhao, P. A. Doroshenko, S. L. Alper, and J. M. Baltz, Dev Biol. 189(1), 148 (1997).

    Article  Google Scholar 

  8. A. Ben-Chetrit, M. Antenos, A. Jurisicova, et al., Mol. Hum. Reprod. 8(8), 758 (2002).

    Article  Google Scholar 

  9. F. Wang, M. Kooistra, M. Lee, et al., Biol. Reprod. 85(4), 702 (2011).

    Article  Google Scholar 

  10. C. L. Steeves, M. A. Hammer, G. B. Walker, et al., Proc. Natl. Acad. Sci. USA 100(24), 13982 (2003).

    Article  ADS  Google Scholar 

  11. J. D. Biggers, J. A. Lawitts, and C. P. Lechene, Mol. Reprod. Dev. 34(4), 380 (1993).

    Article  Google Scholar 

  12. M. A. Hammer and J. M. Baltz, Mol. Reprod. Dev. 62(2), 195 (2002).

    Article  Google Scholar 

  13. M. A. Hammer, G. B. Walker, D. Rae, et al., Proc. Natl. Acad. Sci. USA 100(24), 13982 (2003).

    Article  ADS  Google Scholar 

  14. K. M. Dawson, J. L. Collins, and J. M. Baltz, Biol. Reprod. 59(2), 225 (1998).

    Article  Google Scholar 

  15. J. M. Baltz and C. Zhou, Mol. Reprod. Dev. 79(12), 821 (2012).

    Article  Google Scholar 

  16. G. Longenecker and A. B. Kulkarni, Curr. Protoc. Cell Biol. 19, 1 (2009).

    Google Scholar 

  17. F. Guerif, M. Lemseffer, M. Blanchard, and D. Royere, J. Assist. Reprod. Genet. 26(8), 443 (2009).

    Article  Google Scholar 

  18. O. P. Berezovskaya, L. M. Mezhevikina, and B. N. Veprintsev, Ontogenez 17(5), 553 (1986).

    Google Scholar 

  19. J. A. Lawitts and J. D. Biggers, Methods Enzymol. 225, 153 (1993).

    Article  Google Scholar 

  20. J. M. Baltz, Methods Mol. Biol. 912, 61 (2012).

    Google Scholar 

  21. T. Hadi, M. A. Hammer, C. Algire, et al., Biol. Reprod. 72(1), 179 (2005).

    Article  Google Scholar 

  22. S. Jansen, T. Esmaeilpour, M. Pantaleon, and P. L. Kaye, Reproduction. 131(3), 469 (2006).

    Article  Google Scholar 

  23. R. Augustin, P. Pocar, A. Navarrete-Santos, et al., Mol. Reprod. Dev. 60(3), 370 (2001).

    Article  Google Scholar 

  24. P. Bermejo-Alvarez, R. M. Roberts, and C. S. Rosenfeld, Mol. Reprod. Dev. 79(5), 329 (2012).

    Article  Google Scholar 

  25. L. A. Frank, M. L. Sutton-McDowall, D. L. Russell, et al., Reprod. Fertil. Dev. 25(8), 1095 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Khramtsova.

Additional information

Original Russian Text © E.A. Khramtsova, L.M. Mezhevikina, E.E. Fesenko, 2014, published in Biofizika, 2014, Vol. 59, No. 2, pp. 314–321.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khramtsova, E.A., Mezhevikina, L.M. & Fesenko, E.E. A role of trophoblastic cells in regulation of mouse blastocyst survival in vitro after microinjection and osmotic stress. BIOPHYSICS 59, 257–263 (2014). https://doi.org/10.1134/S0006350914020134

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350914020134

Keywords

Navigation