Log in

Unique Role of Vimentin in the Intermediate Filament Proteins Family

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Intermediate filaments (IFs), being traditionally the least studied component of the cytoskeleton, have begun to receive more attention in recent years. IFs are found in different cell types and are specific to them. Accumulated data have shifted the paradigm about the role of IFs as structures that merely provide mechanical strength to the cell. In addition to this role, IFs have been shown to participate in maintaining cell shape and strengthening cell adhesion. The data have also been obtained that point out to the role of IFs in a number of other biological processes, including organization of microtubules and microfilaments, regulation of nuclear structure and activity, cell cycle control, and regulation of signal transduction pathways. They are also actively involved in the regulation of several aspects of intracellular transport. Among the intermediate filament proteins, vimentin is of particular interest for researchers. Vimentin has been shown to be associated with a range of diseases, including cancer, cataracts, Crohn’s disease, rheumatoid arthritis, and HIV. In this review, we focus almost exclusively on vimentin and the currently known functions of vimentin intermediate filaments (VIFs). This is due to the structural features of vimentin, biological functions of its domains, and its involvement in the regulation of a wide range of basic cellular functions, and its role in the development of human diseases. Particular attention in the review will be paid to comparing the role of VIFs with the role of intermediate filaments consisting of other proteins in cell physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

References

  1. Cheng, J., Syder, A. J., Yu, Q. C., Letal, A., Paller, A. S., and Fuchs, E. (1992) The genetic basis of epidermolytic hyperkeratosis: a disorder of differentiation-specific epidermal keratin genes, Cell, 70, 811-819, https://doi.org/10.1016/0092-8674(92)90314-3.

    Article  CAS  PubMed  Google Scholar 

  2. Chipev, C. C., Korge, B. P., Markova, N., Bale, S. J., DiGiovanna, J. J., Compton, J. G., and Steinert, P. M. (1992) A leucine→proline mutation in the H1 subdomain of keratin 1 causes epidermolytic hyperkeratosis, Cell, 70, 821-828, https://doi.org/10.1016/0092-8674(92)90315-4.

    Article  CAS  PubMed  Google Scholar 

  3. Côté, F., Collard, J. F., and Julien, J. P. (1993) Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis, Cell, 73, 35-46, https://doi.org/10.1016/0092-8674(93)90158-M.

    Article  PubMed  Google Scholar 

  4. Di Somma, S., De Divitiis, O., Marotta, M., Salvatore, G., Cudemo, G., Cuda, G., et al. (2000) Changes in myocardial cytoskeletal intermediate filaments and myocyte contractile dysfunction in dilated cardiomyopathy: an in vivo study in humans, Heart, 84, 659-667, https://doi.org/10.1136/heart.84.6.659.

    Article  CAS  PubMed  Google Scholar 

  5. Fuchs, E., and Weber, K. (1994) Intermediate filaments: structure, dynamics, function and disease, Annu. Rev. Biochem., 63, 345-382, https://doi.org/10.1146/annurev.bi.63.070194.002021.

    Article  CAS  PubMed  Google Scholar 

  6. Dutour-Provenzano, G., and Etienne-Manneville, S. (2021) Intermediate filaments, Curr. Biol., 31, R522-R529, https://doi.org/10.1016/j.cub.2021.04.011.

    Article  CAS  PubMed  Google Scholar 

  7. Schweizer, J., Bowden, P. E., Coulombe, P. A., Langbein, L., Lane, E. B., Magin, T. M., Maltais, L., Omary, M. B., Parry, D. A. D., et al. (2006) New consensus nomenclature for mammalian keratins, J. Cell Biol., 174, 169-174, https://doi.org/10.1083/jcb.200603161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Toivola, D. M., Tao, G. -Z., Habtezion, A., Liao, J., and Omary, M. B. (2005) Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments, Trends Cell Biol., 15, 608-617, https://doi.org/10.1016/j.tcb.2005.09.004.

    Article  CAS  PubMed  Google Scholar 

  9. Iwatsuki, H., and Suda, M. (2010) Seven kinds of intermediate filament networks in the cytoplasm of polarized cells: structure and function, Acta Histochem. Cytochem., 43, 19-31, https://doi.org/10.1267/ahc.10009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lépinoux-Chambaud, C., and Eyer, J. (2013) Review on intermediate filaments of the nervous system and their pathological alterations, Histochem. Cell Biol., 140, 13-22, https://doi.org/10.1007/s00418-013-1101-1.

    Article  CAS  PubMed  Google Scholar 

  11. Lund, L. M., Kerr, J. P., Lupinetti, J., Zhang, Y., Russell, M. A., Bloch, R. J., and Bond, M. (2012) Synemin isoforms differentially organize cell junctions and desmin filaments in neonatal cardiomyocytes, FASEB J., 26, 137-148, https://doi.org/10.1096/fj.10-179408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Michalczyk, K., and Ziman, M. (2005) Nestin structure and predicted function in cellular cytoskeletal organization, Histol. Histopathol., 20, 665-671, https://doi.org/10.14670/HH-20.665.

    Article  CAS  PubMed  Google Scholar 

  13. Schreiber, K. H., and Kennedy, B. K. (2013) When lamins go bad: nuclear structure and disease, Cell, 152, 1365-1375, https://doi.org/10.1016/j.cell.2013.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Georgatos, S. D., Gounari, F., and Remington, S. (1994) The beaded intermediate filaments and their potential functions in eye lens, BioEssays, 16, 413-418, https://doi.org/10.1002/bies.950160609.

    Article  CAS  PubMed  Google Scholar 

  15. Song, S., Landsbury, A., Dahm, R., Liu, Y., Zhang, Q., and Quinlan, R. A. (2009) Functions of the intermediate filament cytoskeleton in the eye lens, J. Clin. Invest., 119, 1837-1848, https://doi.org/10.1172/JCI38277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Battaglia, R. A., Delic, S., Herrmann, H., and Snider, N. T. (2018) Vimentin on the move: new developments in cell migration, F1000Res., 7, 1796, https://doi.org/10.12688/f1000research.15967.1.

    Article  CAS  Google Scholar 

  17. Muller, M., Bhattacharya, S. S., Moore, T., Prescott, Q., Wedig, T., Herrmann, H., and Magin, T. M. (2009) Dominant cataract formation in association with a vimentin assembly disrupting mutation, Hum. Mol. Genet., 18, 1052-1057, https://doi.org/10.1093/hmg/ddn440.

    Article  CAS  PubMed  Google Scholar 

  18. Han, X., Xu, J., Chen, Z., Li, P., Zhao, L., Tao, J., et al. (2022) Gas5 inhibition promotes the axon regeneration in the adult mammalian nervous system, Exp. Neurol., 356, 114157, https://doi.org/10.1016/j.expneurol.2022.114157.

    Article  CAS  PubMed  Google Scholar 

  19. Ye, D., Wang, Q., Yang, Y., Chen, B., Zhang, F., Wang, Z., and Luan, Z. (2023) Identifying genes that affect differentiation of human neural stem cells and myelination of mature oligodendrocytes, Cell. Mol. Neurobiol., 43, 2337-2358, https://doi.org/10.1007/s10571-022-01313-5.

    Article  CAS  PubMed  Google Scholar 

  20. Chen, K.-Z., Liu, S.-X., Li, Y.-W., He, T., Zhao, J., Wang, T., et al. (2023) Vimentin as a potential target for diverse nervous system diseases, Neural Regener. Res., 18, 969-975, https://doi.org/10.4103/1673-5374.355744.

    Article  CAS  Google Scholar 

  21. Aragona, M., Porcino, C., Briglia, M., Mhalhel, K., Abbate, F., Levanti, M., et al. (2023) Vimentin localization in the zebrafish oral cavity: a potential role in taste buds regeneration, Int. J. Mol. Sci., 24, 15619, https://doi.org/10.3390/ijms242115619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, S. Y., Cho, W., Kim, I., Lee, S. H., Oh, G. T., and Park, Y. M. (2020) Oxidized LDL induces vimentin secretion by macrophages and contributes to atherosclerotic inflammation, J. Mol. Med., 98, 973-983, https://doi.org/10.1007/s00109-020-01923-w.

    Article  CAS  PubMed  Google Scholar 

  23. Zeisberg, M., and Neilson, E. G. (2009) Biomarkers for epithelial-mesenchymal transitions, J. Clin. Invest., 119, 1429-1437, https://doi.org/10.1172/JCI36183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mendez, M. G., Kojima, S.-I., and Goldman, R. D. (2010) Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition, FASEB J., 24, 1838-1851, https://doi.org/10.1096/fj.09-151639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Herrmann, H., and Aebi, U. (2000) Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics, Curr. Opin. Cell Biol., 12, 79-90, https://doi.org/10.1016/s0955-0674(99)00060-5.

    Article  CAS  PubMed  Google Scholar 

  26. Hollenbeck, P. J., Bershadsky, A. D., Pletjushkina, O. Y., Tint, I. S., and Vasiliev, J. M. (1989) Intermediate filament collapse is an AtP-dependent and actin-dependent process, J. Cell Sci., 92, 621-631, https://doi.org/10.1242/jcs.92.4.621.

    Article  CAS  PubMed  Google Scholar 

  27. Gyoeva, F. K., and Gelfand, V. I. (1991) Coalignment of vimentin intermediate filaments with microtubules depends on kinesin, Nature, 353, 445-448, https://doi.org/10.1038/353445a0.

    Article  CAS  PubMed  Google Scholar 

  28. Esue, O., Carson, A., Tseng, Y., and Wirtz, D. (2006) A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin, J. Biol. Chem., 281, 30393-30399, https://doi.org/10.1074/jbc.M605452200.

    Article  CAS  PubMed  Google Scholar 

  29. Duarte, S., Viedma-Poyatos, Á., Navarro-Carrasco, E., Martínez, A. E., Pajares, M. A., and Pérez-Sala, D. (2019) Vimentin filaments interact with the actin cortex in mitosis allowing normal cell division, Nat. Commun., 10, 4200, https://doi.org/10.1038/s41467-019-12029-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Serres, M. P., Samwer, M., Truong Quang, B. A., Lavoie, G., Perera, U., Görlich, D., et al. (2020) F-actin interactome reveals vimentin as a key regulator of actin organization and cell mechanics in mitosis, Dev. Cell, 52, 210-222.e7, https://doi.org/10.1016/j.devcel.2019.12.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schaedel, L., Lorenz, C., Schepers, A. V., Klumpp, S., and Köster, S. (2021) Vimentin intermediate filaments stabilize dynamic microtubules by direct interactions, Nat. Commun., 12, 3799, https://doi.org/10.1038/s41467-021-23523-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eckes, B., Dogic, D., Colucci-Guyon, E., Wang, N., Maniotis, A., Ingber, D., et al. (1998) Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts, J. Cell Sci., 111, 1897-1907, https://doi.org/10.1242/jcs.111.13.1897.

    Article  CAS  PubMed  Google Scholar 

  33. Shetty, R., Joshi, D., Jain, M., Vasudevan, M., Paul, J. C., Bhat, G., et al. (2018) Rudhira/BCAS3 is essential for mouse development and cardiovascular patterning, Sci. Rep., 8, 5632, https://doi.org/10.1038/s41598-018-24014-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Joshi, D., and Inamdar, M. S. (2019) Rudhira/BCAS3 couples microtubules and intermediate filaments to promote cell migration for angiogenic remodeling, Mol. Biol. Cell, 30, 1437-1450, https://doi.org/10.1091/mbc.E18-08-0484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Antfolk, D., Sjöqvist, M., Cheng, F., Isoniemi, K., Duran, C. L., Rivero-Muller, A., et al. (2017) Selective regulation of Notch ligands during angiogenesis is mediated by vimentin, Proc. Natl. Acad. Sci. USA, 114, E4574-E4581, https://doi.org/10.1073/pnas.1703057114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schoumacher, M., Goldman, R. D., Louvard, D., and Vignjevic, D. M. (2010) Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia, J. Cell Biol., 189, 541-556, https://doi.org/10.1083/jcb.200909113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. van Bodegraven, E. J., and Etienne-Manneville, S. (2020) Intermediate filaments against actomyosin: the David and Goliath of cell migration, Curr. Opin. Cell Biol., 66, 79-88, https://doi.org/10.1016/j.ceb.2020.05.006.

    Article  CAS  PubMed  Google Scholar 

  38. Chikina, A. S., Zholudeva, A. O., Lomakina, M. E., Kireev, I. I., Dayal, A. A., Minin, A. A., Maurin, M., Svitkina, T. M., and Alexandrova, A. Y. (2024) Plasma membrane blebbing is controlled by subcellular distribution of vimentin intermediate filaments, Cells, 13, 105, https://doi.org/10.3390/cells13010105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Paluch, E. K., and Raz, E. (2013) The role and regulation of blebs in cell migration, Curr. Opin. Cell Biol., 25, 582-590, https://doi.org/10.1016/j.ceb.2013.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Monteiro, P., Yeon, B., Wallis, S. S., and Godinho, S. A. (2023) Centrosome amplification fine tunes tubulin acetylation to differentially control intracellular organization, EMBO J., 42, e112812, https://doi.org/10.15252/embj.2022112812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schwarz, N., and Leube, R. (2016) Intermediate filaments as organizers of cellular space: how they affect mitochondrial structure and function, Cells, 5, 30, https://doi.org/10.3390/cells5030030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nicholls, D. G., and Budd, S. L. (2000) Mitochondria and neuronal survival, Physiol. Rev., 80, 315-360.

    Article  CAS  PubMed  Google Scholar 

  43. Morris, R. L., and Hollenbeck, P. J. (1993) The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth, J. Cell Sci., 104, 917-927, https://doi.org/10.1242/jcs.104.3.917.

    Article  PubMed  Google Scholar 

  44. Chada, S. R., and Hollenbeck, P. J. (2003) Mitochondrial movement and positioning in axons: the role of growth factor signaling, J. Exp. Biol., 206, 1985-1992, https://doi.org/10.1242/jeb.00263.

    Article  CAS  PubMed  Google Scholar 

  45. Milner, D. J., Mavroidis, M., Weisleder, N., and Capetanaki, Y. (2000) Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function, J. Cell Biol., 150, 1283-1298, https://doi.org/10.1083/jcb.150.6.1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wagner, O. I., Lifshitz, J., Janmey, P. A., Linden, M., McIntosh, T. K., and Leterrier, J.-F. (2003) Mechanisms of mitochondria-neurofilament interactions, J. Neurosci., 23, 9046-9058, https://doi.org/10.1523/JNEUROSCI.23-27-09046.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tolstonog, G. V., Belichenko-Weitzmann, I. V., Lu, J.-P., Hartig, R., Shoeman, R. L., Traub, U., and Traub, P. (2005) Spontaneously immortalized mouse embryo fibroblasts: growth behavior of wild-type and vimentin-deficient cells in relation to mitochondrial structure and activity, DNA Cell Biol., 24, 680-709, https://doi.org/10.1089/dna.2005.24.680.

    Article  CAS  PubMed  Google Scholar 

  48. Straube-West, K., Loomis, P. A., Opal, P., and Goldman, R. D. (1996) Alterations in neural intermediate filament organization: functional implications and the induction of pathological changes related to motor neuron disease, J. Cell Sci., 109, 2319-2329, https://doi.org/10.1242/jcs.109.9.2319.

    Article  CAS  PubMed  Google Scholar 

  49. Mose-Larsen, P., Bravo, R., Fey, S. J., Small, J. V., and Celis, J. E. (1982) Putative association of mitochondria with a subpopulation of intermediate-sized filaments in cultured human skin fibroblasts, Cell, 31, 681-692, https://doi.org/10.1016/0092-8674(82)90323-3.

    Article  CAS  PubMed  Google Scholar 

  50. Uttam, J., Hutton, E., Coulombe, P. A., Anton-Lamprecht, I., Yu, Q. C., Gedde-Dahl, T. J., et al. (1996) The genetic basis of epidermolysis bullosa simplex with mottled pigmentation, Proc. Natl. Acad. Sci. USA, 93, 9079-9084, https://doi.org/10.1073/pnas.93.17.9079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gilbert, S., Loranger, A., Daigle, N., and Marceau, N. (2001) Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation, J. Cell Biol., 154, 763-773, https://doi.org/10.1083/jcb.200102130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Capetanaki, Y. (2002) Desmin cytoskeleton: a potential regulator of muscle mitochondrial behavior and function, Trends Cardiovasc. Med., 12, 339-348, https://doi.org/10.1016/s1050-1738(02)00184-6.

    Article  CAS  PubMed  Google Scholar 

  53. Brownlees, J., Ackerley, S., Grierson, A. J., Jacobsen, N. J. O., Shea, K., Anderton, B. H., et al. (2002) Charcot-Marie-Tooth disease neurofilament mutations disrupt neurofilament assembly and axonal transport, Hum. Mol. Genet., 11, 2837-2844, https://doi.org/10.1093/hmg/11.23.2837.

    Article  CAS  PubMed  Google Scholar 

  54. Pérez-Ollé, R., López-Toledano, M. A., Goryunov, D., Cabrera-Poch, N., Stefanis, L., Brown, K., and Liem, R. K. H. (2005) Mutations in the neurofilament light gene linked to Charcot-Marie-Tooth disease cause defects in transport, J. Neurochem., 93, 861-874, https://doi.org/10.1111/j.1471-4159.2005.03095.x.

    Article  CAS  PubMed  Google Scholar 

  55. Nekrasova, O. E., Mendez, M. G., Chernoivanenko, I. S., Tyurin-Kuzmin, P. A., Kuczmarski, E. R., Gelfand, V. I., et al. (2011) Vimentin intermediate filaments modulate the motility of mitochondria, Mol. Biol. Cell, 22, 2282-2289, https://doi.org/10.1091/mbc.E10-09-0766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chernoivanenko, I. S., Matveeva, E. A., Gelfand, V. I., Goldman, R. D., and Minin, A. A. (2015) Mitochondrial membrane potential is regulated by vimentin intermediate filaments, FASEB J., 29, 820-827, https://doi.org/10.1096/fj.14-259903.

    Article  CAS  PubMed  Google Scholar 

  57. Matveeva, E. A., Venkova, L. S., Chernoivanenko, I. S., and Minin, A. A. (2015) Vimentin is involved in regulation of mitochondrial motility and membrane potential by Rac1, Biol. Open, 4, 1290-1297, https://doi.org/10.1242/bio.011874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dayal, A. A., Medvedeva, N. V., Nekrasova, T. M., Duhalin, S. D., Surin, A. K., and Minin, A. A. (2020) Desmin interacts directly with mitochondria, Int. J. Mol. Sci., 21, 8122, https://doi.org/10.3390/ijms21218122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kulik, A. V., Gioeva, F. K., and Minin, A. A. (2002) Study of the mitochondria movement using videomicroscopy, Russ. J. Dev. Biol., 33, 299-305.

    Article  Google Scholar 

  60. Nekrasova, O. E., Minin, A. A., Kulik, A. V., and Minin, A. A. (2005) Regulation of mitochondria form and distribution by fibronectin, Membr. Cell Biol. Biochem. Moscow Suppl. Ser. A, 22, 105-112.

    CAS  Google Scholar 

  61. Kulik, A. V., Nekrasova, O. E., and Minin, A. A. (2006) Mitochondria motility is regulated by F-actin, Membr. Cell Biol. Biochem. Moscow Suppl. Ser. A, 23, 42-51.

    CAS  Google Scholar 

  62. Minin, A. A., Kulik, A. V., Gyoeva, F. K., Li, Y., Goshima, G., and Gelfand, V. I. (2006) Regulation of mitochondria distribution by RhoA and formins, J. Cell Sci., 119, 659-670, https://doi.org/10.1242/jcs.02762.

    Article  CAS  PubMed  Google Scholar 

  63. Nekrasova, O. E., Kulik, A. V., and Minin, A. A. (2007) Protein kinase C regulates mitochondrial motility, Biochemistry (Moscow) Suppl. Ser. A Membr. Cell Biol., 1, 108-113, https://doi.org/10.1134/S199074780702002X.

    Article  Google Scholar 

  64. Fernández Casafuz, A. B., De Rossi, M. C., and Bruno, L. (2023) Mitochondrial cellular organization and shape fluctuations are differentially modulated by cytoskeletal networks, Sci. Rep., 13, 4065, https://doi.org/10.1038/s41598-023-31121-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gerashchenko, M. V., Chernoivanenko, I. S., Moldaver, M. V., and Minin, A. A. (2009) Dynein is a motor for nuclear rotation while vimentin IFs is a “brake”, Cell. Biol. Int., 33, 1057-1064, https://doi.org/10.1016/j.cellbi.2009.06.020.

    Article  CAS  PubMed  Google Scholar 

  66. Ramaekers, F. C. S., Duniat, I., Dodemont, H. J., Benedettit, E. L., and Bloemendal, H. (1982) Lenticular intermediate-sized filaments: biosynthesis and interaction with plasma membrane, Proc. Natl. Acad. Sci. USA, 79, 3208-3212, https://doi.org/10.1073/pnas.79.10.3208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ramaekers, F. C., Poels, L. G., Jap, P. H., and Bloemendal, H. (1982) Simultaneous demonstration of microfilaments and intermediate-sized filaments in the lens by double immunofluorescence, Exp. Eye Res., 35, 363-369, https://doi.org/10.1016/0014-4835(82)90099-9.

    Article  CAS  PubMed  Google Scholar 

  68. Capetanaki, Y. G., Ngai, J., Flytzanis, C. N., and Lazarides, E. (1983) Tissue-specific expression of two mRNA species transcribed from a single vimentin gene, Cell, 35, 411-420, https://doi.org/10.1016/0092-8674(83)90174-5.

    Article  CAS  PubMed  Google Scholar 

  69. Schnitzer, J., Franke, W. W., and Schachner, M. (1981) Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of develo** and adult mouse nervous system, J. Cell Biol., 90, 435-447, https://doi.org/10.1083/jcb.90.2.435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tapscott, S. J., Bennett, G. S., Toyama, Y., Kleinbart, F., and Holtzer, H. (1981) Intermediate filament proteins in the develo** chick spinal cord, Dev. Biol., 86, 40-54, https://doi.org/10.1016/0012-1606(81)90313-4.

    Article  CAS  PubMed  Google Scholar 

  71. Sax, C. M., Farrell, F. X., and Zehner, Z. E. (1989) Down-regulation of vimentin gene expression during myogenesis is controlled by a 5′-flanking sequence, Gene, 78, 235-242, https://doi.org/10.1016/0378-1119(89)90226-6.

    Article  CAS  PubMed  Google Scholar 

  72. Battle, A., Brown, C. D., Engelhardt, B. E., and Montgomery, S. B. (2017) Genetic effects on gene expression across human tissues, Nature, 550, 204-213, https://doi.org/10.1038/nature24277.

    Article  PubMed  Google Scholar 

  73. Forrest, A. R. R., Kawaji, H., Rehli, M., Baillie, J. K., de Hoon, M. J. L., Haberle, V., and Hayashizaki, Y. (2014) A promoter-level mammalian expression atlas, Nature, 507, 462-470, https://doi.org/10.1038/nature13182.

    Article  CAS  PubMed  Google Scholar 

  74. Joo, C. K., Lee, E. H., Kim, J. C., Kim, Y. H., Lee, J. H., Kim, J. T., and Kim, J. (1999) Degeneration and transdifferentiation of human lens epithelial cells in nuclear and anterior polar cataracts, J. Cataract Refract. Surg., 25, 652-658, https://doi.org/10.1016/s0886-3350(99)00009-7.

    Article  CAS  PubMed  Google Scholar 

  75. Upton, M. P., Hirohashi, S., Tome, Y., Miyazawa, N., Suemasu, K., and Shimosato, Y. (1986) Expression of vimentin in surgically resected adenocarcinomas and large cell carcinomas of lung, Am. J. Surg. Pathol., 10, 560-567, https://doi.org/10.1097/00000478-198608000-00006.

    Article  CAS  PubMed  Google Scholar 

  76. Dauphin, M., Barbe, C., Lemaire, S., Nawrocki-Raby, B., Lagonotte, E., Delepine, G., Polette, M. (2013) Vimentin expression predicts the occurrence of metastases in non small cell lung carcinomas, Lung Cancer, 81, 117-122, https://doi.org/10.1016/j.lungcan.2013.03.011.

    Article  PubMed  Google Scholar 

  77. Virtakoivu, R., Mai, A., Mattila, E., De Franceschi, N., Imanishi, S. Y., Corthals, G., Ivaska, J. (2015) Vimentin-ERK signaling uncouples slug gene regulatory function, Cancer Res., 75, 2349-2362, https://doi.org/10.1158/0008-5472.CAN-14-2842.

    Article  CAS  PubMed  Google Scholar 

  78. Flier, S. N., Tanjore, H., Kokkotou, E. G., Sugimoto, H., Zeisberg, M., and Kalluri, R. (2010) Identification of epithelial to mesenchymal transition as a novel source of fibroblasts in intestinal fibrosis, J. Biol. Chem., 285, 20202-20212, https://doi.org/10.1074/jbc.M110.102012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Evrard, S. M., Lecce, L., Michelis, K. C., Nomura-Kitabayashi, A., Pandey, G., Purushothaman, K.-R., and Kovacic, J. C. (2016) Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability, Nat. Commun., 7, 11853, https://doi.org/10.1038/ncomms11853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fernández-Ortega, C., Ramírez, A., Casillas, D., Paneque, T., Ubieta, R., Dubed, M., and Betancourt, L. (2016) Identification of vimentin as a potential therapeutic target against HIV infection, Viruses, 8, 98, https://doi.org/10.3390/v8060098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kueper, T., Grune, T., Prahl, S., Lenz, H., Welge, V., Biernoth, T., and Blatt, T. (2007) Vimentin is the specific target in skin glycation. Structural prerequisites, functional consequences, and role in skin aging, J. Biol. Chem., 282, 23427-23436, https://doi.org/10.1074/jbc.M701586200.

    Article  CAS  PubMed  Google Scholar 

  82. Mortensen, J. H., Godskesen, L. E., Jensen, M. D., Van Haaften, W. T., Klinge, L. G., Olinga, P., and Krag, A. (2015) Fragments of citrullinated and MMP-degraded vimentin and MMP-degraded type III collagen are novel serological Biomarkers to differentiate Crohn’s disease from ulcerative colitis, J. Crohns Colitis, 9, 863-872, https://doi.org/10.1093/ecco-jcc/jjv123.

    Article  PubMed  Google Scholar 

  83. Zhang, L., Wang, Y., Li, W., Tsonis, P. A., Li, Z., **e, L., and Huang, Y. (2017) MicroRNA-30a regulation of epithelial-mesenchymal transition in diabetic cataracts through targeting SNAI1, Sci. Rep., 7, 1117, https://doi.org/10.1038/s41598-017-01320-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stevens, C., Henderson, P., Nimmo, E. R., Soares, D. C., Dogan, B., Simpson, K. W., and Satsangi, J. (2013) The intermediate filament protein, vimentin, is a regulator of NOD2 activity, Gut, 62, 695-707, https://doi.org/10.1136/gutjnl-2011-301775.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Science Foundation (project no. 23-74-00036, to A.A.M.).

Author information

Authors and Affiliations

Authors

Contributions

I.B.A. and A.A.M. conceptualization and management of the work; I.B.A., A.S.Sh., A.A.D., A.S.Ch., O.I.P., and A.A.M. discussion of research results; I.B.A., A.S.Sh., and A.A.M. manuscript writing; A.A.D. and A.S.Ch. preparation of illustrations; I.B.A., A.S.Sh., A.S.Ch., and A.A.M. editing the text of the article; A.A.D. translation into English.

Corresponding author

Correspondence to Alexander A. Minin.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alieva, I.B., Shakhov, A.S., Dayal, A.A. et al. Unique Role of Vimentin in the Intermediate Filament Proteins Family. Biochemistry Moscow 89, 726–736 (2024). https://doi.org/10.1134/S0006297924040114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924040114

Keywords

Navigation